Suppr超能文献

抗逆转录病毒药物存在下 HIV 的多株模型的动力学分析。

Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs.

机构信息

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

J Biol Dyn. 2008 Jul;2(3):323-45. doi: 10.1080/17513750701775599.

Abstract

One major drawback associated with the use of anti-retroviral drugs in curtailing HIV spread in a population is the emergence and transmission of HIV strains that are resistant to these drugs. This paper presents a deterministic HIV treatment model, which incorporates a wild (drug sensitive) and a drug-resistant strain, for gaining insights into the dynamical features of the two strains, and determining effective ways to control HIV spread under this situation. Rigorous qualitative analysis of the model reveals that it has a globally asymptotically stable disease-free equilibrium whenever a certain epidemiological threshold (R t 0) is less than unity and that the disease will persist in the population when this threshold exceeds unity. Further, for the case where R t 0 > 1, it is shown that the model can have two co-existing endemic equilibria, and competitive exclusion phenomenon occurs whenever the associated reproduction number of the resistant strain (R t r) is greater than that of the wild strain (R t w). Unlike in the treatment model, it is shown that the model without treatment can have a family of infinitely many endemic equilibria when its associated epidemiological threshold (R(0)) exceeds unity. For the case when [Formula in text], it is shown that the widespread use of treatment against the wild strain can lead to its elimination from the community if the associated reduction in infectiousness of infected individuals (treated for the wild strain) does not exceed a certain threshold value (in this case, the use of treatment is expected to make R t w < R t r.

摘要

使用抗逆转录病毒药物来控制人群中 HIV 的传播存在一个主要的缺点,即会出现并传播对这些药物具有耐药性的 HIV 株。本文提出了一个确定性的 HIV 治疗模型,该模型包含了野生(药物敏感)和耐药株,以深入了解两种菌株的动力学特征,并确定在这种情况下控制 HIV 传播的有效方法。对该模型的严格定性分析表明,只要某个流行病学阈值(R t 0)小于 1,就存在一个全局渐近稳定的无病平衡点,而当这个阈值超过 1 时,疾病将在人群中持续存在。此外,对于 R t 0 > 1 的情况,表明模型可以有两个共存的地方病平衡点,并且只要耐药株的相关繁殖数(R t r)大于野生株(R t w),就会发生竞争排斥现象。与治疗模型不同的是,当模型没有治疗时,如果其相关的流行病学阈值(R(0))超过 1,它可以有一个无限多个地方病平衡点的族。对于[公式在文本中]的情况,表明如果治疗野生株的相关传染性降低(针对野生株进行治疗的个体)不超过某个阈值,则广泛使用针对野生株的治疗可能会导致其从社区中消除(在这种情况下,治疗的使用预计会使 R t w < R t r。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验