Suppr超能文献

膳食污染物暴露动态模型的统计分析。

Statistical analysis of a dynamic model for dietary contaminant exposure.

机构信息

MODAL’X - Université Paris X, 200 av. de la République, 92100 Nanterre cedex, France.

出版信息

J Biol Dyn. 2010 Mar;4(2):212-34. doi: 10.1080/17513750903222960.

Abstract

This paper is devoted to the statistical analysis of a stochastic model introduced in [P. Bertail, S. Clémençon, and J. Tressou, A storage model with random release rate for modelling exposure to food contaminants, Math. Biosci. Eng. 35 (1) (2008), pp. 35-60] for describing the phenomenon of exposure to a certain food contaminant. In this modelling, the temporal evolution of the contamination exposure is entirely determined by the accumulation phenomenon due to successive dietary intakes and the pharmacokinetics governing the elimination process inbetween intakes, in such a way that the exposure dynamic through time is described as a piecewise deterministic Markov process. Paths of the contamination exposure process are scarcely observable in practice, therefore intensive computer simulation methods are crucial for estimating the time-dependent or steady-state features of the process. Here we consider simulation estimators based on consumption and contamination data and investigate how to construct accurate bootstrap confidence intervals (CI) for certain quantities of considerable importance from the epidemiology viewpoint. Special attention is also paid to the problem of computing the probability of certain rare events related to the exposure process path arising in dietary risk analysis using multilevel splitting or importance sampling (IS) techniques. Applications of these statistical methods to a collection of data sets related to dietary methyl mercury contamination are discussed thoroughly.

摘要

本文致力于对 [P. Bertail, S. Clémençon, and J. Tressou, A storage model with random release rate for modelling exposure to food contaminants, Math. Biosci. Eng. 35 (1) (2008), pp. 35-60] 中引入的随机模型进行统计分析,以描述暴露于某种食物污染物的现象。在这种建模中,暴露的时间演变完全取决于由于连续的饮食摄入引起的积累现象和在摄入之间控制消除过程的药代动力学,从而使随时间的暴露动态被描述为分段确定性马尔可夫过程。污染暴露过程的路径在实践中很少被观察到,因此密集的计算机模拟方法对于估计过程的时变或稳态特征至关重要。在这里,我们考虑基于消费和污染数据的模拟估计器,并研究如何为从流行病学角度来看具有相当重要性的某些数量构建准确的自举置信区间 (CI)。还特别关注使用多级分裂或重要性抽样 (IS) 技术计算与饮食风险分析中出现的暴露过程路径相关的某些罕见事件的概率的问题。这些统计方法应用于与饮食甲基汞污染相关的数据集的收集进行了深入讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验