Departamento de Biología Molecular, Facultad de Medicina, IFIMAV-Universidad de Cantabria, Santander, Spain.
PLoS One. 2012;7(8):e42536. doi: 10.1371/journal.pone.0042536. Epub 2012 Aug 6.
Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules.
METHODOLOGY/PRINCIPAL FINDINGS: We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line.
CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
最近,长非编码 RNA 作为调节编码基因表达的关键分子出现。这些分子可能来自功能性基因的反义转录,产生天然反义转录本(NATs),或者来自转录活性假基因。TBCA 与β-微管蛋白相互作用,参与新的微管蛋白异二聚体的折叠和二聚化,微管蛋白是微管的结构单元。
方法/主要发现:我们发现小鼠基因组中含有两个结构不同的 Tbca 基因,分别位于染色体 13(Tbca13)和 16(Tbca16)上。有趣的是,尽管这两个 Tbca 基因广泛表达,但在小鼠睾丸成熟过程中表现出不同的表达模式。事实上,随着睾丸成熟的进行,Tbca13mRNA 水平逐渐增加,而 Tbca16mRNA 水平则下降。这表明这两个基因之间存在一种调节机制,促使我们研究这两种蛋白质的存在。然而,使用串联质谱法,我们无法在睾丸提取物中鉴定出 TBCA16 蛋白,即使在对应于 Tbca16 转录本水平最高的成熟阶段的提取物中也是如此。这些令人费解的结果促使我们重新分析 Tbca16 的表达。然后,我们检测到 Tbca16 转录产生有义和天然反义转录本。引人注目的是,在一个小鼠精母细胞系中,这些转录本的特异性 RNAi 耗竭会导致 Tbca13 转录本水平的增加。
结论/意义:我们的结果表明,Tbca13mRNA 水平受到 Tbca16mRNA 的有义和天然反义转录本水平的转录后调节。我们提出,这种调节机制在精子发生过程中起作用,该过程涉及微管的重排、特定微管结构的组装,并且需要 TBCA 的关键水平。