Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
Langmuir. 2012 Oct 30;28(43):15313-22. doi: 10.1021/la301957m. Epub 2012 Aug 20.
DNA-templated silver nanoclusters (Ag NCs) are emerging sets of fluorophores that are widely applicable because of high brightness, good photostability, and visible to near-infrared emissions tunable using the DNA sequence and length to change the NC size. We find that fluorescent Ag NCs can be size-selectively grown at DNA abasic sites (AP site) using a constrained duplex environment opposed by a cytosine and flanked by two guanines. The size of the AP site-grown Ag NCs is not affected by the increasing Ag(+) concentration. A Job's plot analysis shows that Ag(2) NCs are the species responsible for the observed emissions. Although varying the DNA sequence one base away from the AP site (i.e., the Ag NC growth site) does not alter the size of the fluorescent Ag NCs, the emissions of the formed Ag NCs are still gradually red shifted as the sequence changes from thymine (T) to cytosine (C), adenine (A), and guanine (G). Furthermore, this emission shift is strongly dependent on the base-stacking direction of the 3'-side sequence of the 5'-G stack exactly flanking the AP site, which exhibits a larger emission alteration than altering the 5'-side sequence of the 3'-G stack flanking the AP site on the other side of the site. The excited-state lifetimes of the Ag NCs are inversely proportional to the singlet energies (ΔE(0,0)) of the Ag NCs relative to their ground state and of the vertical ionization potentials of the guanines directly flanking the AP site as determined by the base stacking. All of these results support the conclusion that the Ag NC excited state becomes more stable by interacting with a guanine base because of the larger electronic dipole moment that can be modified by the stacked sequences. Additionally, the size of the formed Ag NCs seems to be dependent on the consecutive AP site number. Thus, the AP site design in this work provides an easy way to shed light on the role of DNA base stacking in the optical properties of Ag NCs.
DNA 模板银纳米团簇(Ag NCs)是一组新兴的荧光团,由于其高亮度、良好的光稳定性以及可通过 DNA 序列和长度来调节的可见到近红外发射,因此具有广泛的应用前景。我们发现,使用受约束的双链体环境和嘧啶碱基(C)以及两侧的两个鸟嘌呤碱基(G)可以在 DNA 无碱基位点(AP 位点)处选择性地生长荧光 Ag NCs。AP 位点生长的 Ag NCs 的大小不受 Ag(+)浓度增加的影响。Job 分析表明,Ag(2) NCs 是产生观察到的发射的物种。尽管使远离 AP 位点的 DNA 序列(即 Ag NC 生长位点)变化一个碱基不会改变荧光 Ag NCs 的大小,但形成的 Ag NCs 的发射仍然会随着序列从胸腺嘧啶(T)到胞嘧啶(C)、腺嘌呤(A)和鸟嘌呤(G)的变化而逐渐红移。此外,这种发射位移强烈依赖于正好位于 AP 位点侧翼的 5'-G 堆积的 3'-侧序列的碱基堆积方向,与改变 AP 位点另一侧侧翼的 3'-G 堆积的 5'-侧序列相比,这种发射变化更大。Ag NCs 的激发态寿命与 Ag NCs 的单重态能量(ΔE(0,0))成反比,与 Ag NCs 相对于其基态的垂直电离势以及直接位于 AP 位点侧翼的鸟嘌呤碱基的垂直电离势成反比,这是由碱基堆积决定的。所有这些结果都支持这样的结论,即 Ag NC 激发态通过与鸟嘌呤碱基相互作用而变得更加稳定,因为可以通过堆积的序列来修饰更大的偶极矩。此外,形成的 Ag NCs 的大小似乎取决于连续的 AP 位点数量。因此,本工作中的 AP 位点设计为研究 DNA 碱基堆积对 Ag NC 光学性质的作用提供了一种简单的方法。