Suppr超能文献

芽孢杆菌和梭菌中孢子形成的基因组决定因素:走向最小的孢子形成特异性基因集。

Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

Environ Microbiol. 2012 Nov;14(11):2870-90. doi: 10.1111/j.1462-2920.2012.02841.x. Epub 2012 Aug 13.

Abstract

Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.

摘要

三类低 G+C 革兰氏阳性菌(厚壁菌门),芽孢杆菌、梭菌和阴性菌,包括许多能够产生耐热芽孢的成员。产芽孢的厚壁菌门包括许多环境重要的生物,如昆虫病原体和纤维素降解的工业菌株,以及炭疽、肉毒中毒、气性坏疽和破伤风等疾病的人类病原体。在研究最充分的模式生物枯草芽孢杆菌中,孢子形成涉及超过 500 个基因,其中许多基因在其他芽孢杆菌和梭菌中保守。这项工作旨在通过分析各种厚壁菌门中孢子形成基因的存在来定义孢子形成的基因组要求,包括那些基因组小于枯草芽孢杆菌的厚壁菌门。可培养的孢子形成体的基因组大于 2300kb,包含超过 2150 个编码蛋白的基因,其中 60 个是与枯草芽孢杆菌中显然对孢子形成必不可少的基因的同源物。梭菌孢子形成体缺乏 spoIIB、sda、spoVID 和 safA 等基因,并且 spoIIQ 和 spoIVFA 的非同源置换,表明芽孢杆菌和梭菌在吞噬和孢子壳形成步骤中存在显著差异。许多枯草芽孢杆菌孢子形成基因,特别是编码小酸溶性孢子蛋白和孢子壳蛋白的基因,仅存在于芽孢杆菌科,甚至存在于芽孢杆菌属的一个亚群中。本文中汇编的孢子形成基因的系统发育谱证实了共同的孢子形成基因核心的存在,但也阐明了各种谱系中孢子形成过程的多样性。这些图谱应该有助于进一步研究尚未表征的广泛存在的孢子形成基因,这最终将允许在芽孢杆菌和梭菌中划定孢子形成特异性基因的最小集合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e564/3533761/06ac062e87ac/emi0014-2870-f1.jpg

相似文献

1
Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes.
Environ Microbiol. 2012 Nov;14(11):2870-90. doi: 10.1111/j.1462-2920.2012.02841.x. Epub 2012 Aug 13.
2
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the .
J Bacteriol. 2022 Jun 21;204(6):e0007922. doi: 10.1128/jb.00079-22. Epub 2022 May 31.
3
Uncovering new species in vertebrate hosts through metagenome-assembled genomes with potential for sporulation.
Microbiol Spectr. 2024 Nov 5;12(11):e0211324. doi: 10.1128/spectrum.02113-24. Epub 2024 Sep 16.
4
Investigation of sporulation in the Desulfotomaculum genus: a genomic comparison with the genera Bacillus and Clostridium.
Environ Microbiol Rep. 2014 Dec;6(6):756-66. doi: 10.1111/1758-2229.12200. Epub 2014 Sep 8.
6
CsfG, a sporulation-specific, small non-coding RNA highly conserved in endospore formers.
RNA Biol. 2011 May-Jun;8(3):358-64. doi: 10.4161/rna.8.3.14998. Epub 2011 May 1.
7
A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia.
Environ Microbiol. 2013 Oct;15(10):2631-41. doi: 10.1111/1462-2920.12173. Epub 2013 Jul 9.
8
Sporulation and Germination in Clostridial Pathogens.
Microbiol Spectr. 2019 Nov;7(6). doi: 10.1128/microbiolspec.GPP3-0017-2018.
9
Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales.
Microb Genom. 2020 Nov;6(11). doi: 10.1099/mgen.0.000451. Epub 2020 Oct 14.
10
Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch ( Firmicutes).
Arch Microbiol. 2004 Oct;182(2-3):182-92. doi: 10.1007/s00203-004-0696-y. Epub 2004 Aug 31.

引用本文的文献

3
Functional redundancy between penicillin-binding proteins during asymmetric cell division in .
bioRxiv. 2025 Mar 7:2024.09.26.615255. doi: 10.1101/2024.09.26.615255.
4
MAGs-centric crack: how long will, spore-positive and most , microsymbionts remain recalcitrant to axenic growth?
Front Microbiol. 2024 Jul 31;15:1367490. doi: 10.3389/fmicb.2024.1367490. eCollection 2024.
5
Spores of Clostridioides difficile are toxin delivery vehicles.
Commun Biol. 2024 Jul 10;7(1):839. doi: 10.1038/s42003-024-06521-x.
6
Cleavage of an engulfment peptidoglycan hydrolase by a sporulation signature protease in Clostridioides difficile.
Mol Microbiol. 2024 Aug;122(2):213-229. doi: 10.1111/mmi.15291. Epub 2024 Jun 22.
9
SpoIVA is an essential morphogenetic protein for the formation of heat- and lysozyme-resistant spores in NBRC 14293.
Front Microbiol. 2024 Apr 24;15:1338751. doi: 10.3389/fmicb.2024.1338751. eCollection 2024.
10
The small acid-soluble proteins of spore-forming organisms: similarities and differences in function.
Anaerobe. 2024 Jun;87:102844. doi: 10.1016/j.anaerobe.2024.102844. Epub 2024 Apr 4.

本文引用的文献

1
Phylogenomics of prokaryotic ribosomal proteins.
PLoS One. 2012;7(5):e36972. doi: 10.1371/journal.pone.0036972. Epub 2012 May 16.
2
Structure of the basal components of a bacterial transporter.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5446-51. doi: 10.1073/pnas.1120113109. Epub 2012 Mar 19.
3
Structure of components of an intercellular channel complex in sporulating Bacillus subtilis.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5441-5. doi: 10.1073/pnas.1120087109. Epub 2012 Mar 19.
5
Dynamics of spore coat morphogenesis in Bacillus subtilis.
Mol Microbiol. 2012 Jan;83(2):245-60. doi: 10.1111/j.1365-2958.2011.07936.x. Epub 2011 Dec 15.
6
The NCBI Taxonomy database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D136-43. doi: 10.1093/nar/gkr1178. Epub 2011 Dec 1.
7
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
8
NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy.
Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5. doi: 10.1093/nar/gkr1079. Epub 2011 Nov 24.
9
InterPro in 2011: new developments in the family and domain prediction database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12. doi: 10.1093/nar/gkr948. Epub 2011 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验