Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil.
Laboratory of Environmental Antimicrobial Resistance (LEARN), Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Centro, Diadema, São Paulo, Brazil.
Microbiol Spectr. 2024 Nov 5;12(11):e0211324. doi: 10.1128/spectrum.02113-24. Epub 2024 Sep 16.
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the phylum. We identified potential new species in the classes (, , , and families) and ( and families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that and have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within , , UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to , , and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
宏基因组组装基因组 (MAGs) 有助于鉴定不可培养的微生物并了解它们的生态功能。MAGs 在研究与孢子形成相关的基因方面具有优势,特别是在分离许多居住在多个宿主肠道微生物群中的物种时存在困难。细菌孢子形成是一种关键的生存机制,对致病性和生物技术都有影响。在这里,我们研究了来自脊椎动物宿主的 MAGs,重点是分类鉴定,并确定门内潜在新物种中的与孢子形成相关的基因。通过系统发育和功能途径分析,我们在类 ( 、 、 和 科) 和 ( 和 科) 中鉴定出潜在的新物种,突出了它们的孢子形成潜力。我们的研究涵盖了 146 个 MAGs,其中 124 个在家族水平上没有经过精细的分类分配。我们发现 和 在牛、猪、家禽和人类宿主的精细家族 MAGs 中具有独特的孢子形成基因谱。在 MAGs 中存在与 Spo0A 调控子、吞噬和孢子皮层相关的基因,这突显了具有孢子形成潜力的尚未表征的物种中孢子形成过程的基本机制来自宏基因组暗物质。此外,基因组分析基于基因存在、基因组大小和参与孢子形成的代谢途径来预测孢子形成潜力。我们强调了通过系统发育分析尚未表征的 MAGs,并涵盖了 、 、UBA4882 和 UBA994 类中具有广泛孢子形成细菌潜力的 MAGs。这些发现有助于探索孢子形成细菌,为多个宿主中的新型物种多样性、它们的适应策略以及在生物技术和宿主健康中的潜在应用提供了证据。重要的是,孢子对于细菌在恶劣环境中的生存至关重要,有助于它们的存活和适应。探索来自不同宿主的宏基因组组装基因组 (MAGs) 中与细菌孢子形成相关的基因有助于临床和生物技术领域。我们的研究调查了家禽、猪、牛和人类的 MAGs 中与细菌孢子形成相关的基因的程度,揭示了未培养细菌中的这些基因。通过系统发育和功能分析,我们确定了具有孢子形成能力的潜在新型 物种。值得注意的是,属于 、 和未知类别的 MAGs,即 UBA4882 和 UBA994,在家族水平上仍然没有特征,这表明这些基因组中也存在孢子形成。这些发现有助于我们理解微生物的适应,并强调了孢子形成在不同宿主中的重要性。对新型物种及其孢子形成能力的进一步研究可以促进各种生物体中细菌维持机制的研究,并为生物技术研究中的应用提供信息。