Suppr超能文献

一种基于感知的皮肤镜图像对比度增强和分割方法。

A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images.

机构信息

Department of Computer Science, National Textile University, Faisalabad, Pakistan.

出版信息

Skin Res Technol. 2013 Feb;19(1):e490-7. doi: 10.1111/j.1600-0846.2012.00670.x. Epub 2012 Aug 13.

Abstract

BACKGROUND/PURPOSE: Dermoscopy images often suffer from low contrast caused by different light conditions, which reduces the accuracy of lesion border detection. Accordingly for lesion recognition, automatic melanoma border detection (MBD) is an initial as well as crucial task.

METHOD

In this article, a novel perceptually oriented approach for MBD is presented by combing region and edge-based segmentation techniques. The MBD system for color contrast and segmentation improvement consists of four main steps: first, the RGB dermoscopy image is transformed to CIE Lab* color space, lesion contrast is then enhanced by adjusting and mapping the intensity values of the lesion pixels in the specified range using the three channels of CIE Lab*, a hill-climbing algorithm is used later to detect region-of-interest (ROI) map in a perceptually oriented color space using color channels (L*,a*,b*) and finally, an adaptive thresholding is applied to determine the optimal lesion border. Manually drawn borders obtained from an experienced dermatologist are utilized as a ground truth for performance evaluation.

RESULTS

The proposed MBD method is tested on a total of 100 dermoscopy images. A comparative study with three state-of-the-art color and texture-based segmentation techniques (JSeg, dermatologists-like tumor area extraction: DTEA and region-based active contours: RAC), is also conducted to show the effectiveness of our MBD method using measures of true positive rate (TPR), false positive rate (FPR), and error probability (EP). Among different algorithms, our MBD algorithm achieved TPR of 94.25%, FPR of 3.56%, and EP of 4%.

CONCLUSIONS

The proposed MBD approach is highly accurate to detect the lesion border area. The MBD software and sample of dermoscopy images can be downloaded at http://cs.ntu.edu.pk/research.php.

摘要

背景/目的:由于不同的光照条件会导致皮肤镜图像对比度降低,从而降低病变边界检测的准确性。因此,对于病变识别,自动黑素瘤边界检测(MBD)是一个初始且至关重要的任务。

方法

本文提出了一种新的基于感知的 MBD 方法,结合了基于区域和基于边缘的分割技术。用于改善颜色对比度和分割的 MBD 系统由四个主要步骤组成:首先,将 RGB 皮肤镜图像转换为 CIE Lab颜色空间,然后通过调整和映射指定范围内病变像素的强度值来增强病变对比度,使用 CIE Lab的三个通道,使用基于颜色通道(L*、a*、b*)的 hill-climbing 算法在感知导向的颜色空间中检测感兴趣区域(ROI)图,最后应用自适应阈值来确定最佳病变边界。利用经验丰富的皮肤科医生手动绘制的边界作为性能评估的基准。

结果

共对 100 张皮肤镜图像进行了所提出的 MBD 方法的测试。还与三种基于颜色和纹理的最先进分割技术(JSeg、类似皮肤科医生的肿瘤区域提取:DTEA 和基于区域的主动轮廓:RAC)进行了对比研究,以使用真阳性率(TPR)、假阳性率(FPR)和误差概率(EP)来证明我们的 MBD 方法的有效性。在不同的算法中,我们的 MBD 算法实现了 94.25%的 TPR、3.56%的 FPR 和 4%的 EP。

结论

所提出的 MBD 方法非常准确,可以检测病变边界区域。MBD 软件和皮肤镜图像样本可在 http://cs.ntu.edu.pk/research.php 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验