Department of Computer Science, COMSATS Institute of Information Technology, Sahiwal, Pakistan.
Skin Res Technol. 2013 Aug;19(3):314-9. doi: 10.1111/srt.12047. Epub 2013 Apr 11.
BACKGROUND/PURPOSE: Computer-aided design (CAD) methods are highly valuable for the analysis of skin lesions using digital dermoscopy due to low rate of diagnostic accuracy of expert dermatologist. In computerized diagnostic methods, automatic border detection is the first and crucial step.
In this study, a novel unified approach is proposed for automatic border detection (ABD). A preprocessing step is performed by normalized smoothing filter (NSF) to reduce background noise. Mixture models technique is then utilized to initially segment the lesion area roughly. Afterward, local entropy thresholding is performed to extract the lesion candidate pixels and the lesion border is smoothed using morphological reconstruction.
The overall ABD system is tested on a set of 100 dermoscopy images with ground truth. A comparative study was conducted with the other three state-of-the-art methods using statistical metrics. This ABD technique has the minimal average error probability rate of 5%, true detection of 92.10% and false positive rate of 6.41%.
Results demonstrate that the proposed method segments the lesion area accurately. Sample dataset and execute software are available online and can be downloaded from: http://cs.ntu.edu.pk/research.
背景/目的:由于专家皮肤科医生的诊断准确率较低,计算机辅助设计 (CAD) 方法对于使用数字皮肤镜分析皮肤病变非常有价值。在计算机化的诊断方法中,自动边界检测是第一步也是关键步骤。
在这项研究中,提出了一种用于自动边界检测 (ABD) 的新颖统一方法。通过归一化平滑滤波器 (NSF) 执行预处理步骤,以减少背景噪声。然后,利用混合模型技术粗略地初始分割病变区域。之后,进行局部熵阈值处理以提取病变候选像素,并使用形态学重建平滑病变边界。
整体 ABD 系统在具有真实边界的 100 张皮肤镜图像上进行了测试。使用统计指标与其他三种最先进的方法进行了对比研究。该 ABD 技术的平均错误概率率最小为 5%,真实检测率为 92.10%,假阳性率为 6.41%。
结果表明,该方法可以准确地分割病变区域。示例数据集和执行软件可在线获得,并可从以下网址下载:http://cs.ntu.edu.pk/research。