Suppr超能文献

新型 Podoviridae 科噬菌体感染泡菜乳杆菌,该菌分离自泡菜。

Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi.

机构信息

Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.

出版信息

Appl Environ Microbiol. 2012 Oct;78(20):7299-308. doi: 10.1128/AEM.00031-12. Epub 2012 Aug 10.

Abstract

The first complete genome sequence of a phage infecting Weissella cibaria (Weissella kimchii) is presented. The bacteriophage YS61 was isolated from kimchi, a Korean fermented vegetable dish. Bacteriophages are recognized as a serious problem in industrial fermentations; however, YS61 differed from many virulent phages associated with food fermentations since it was difficult to propagate and was very susceptible to resistance development. Sequence analysis revealed that YS61 resembles Podoviridae of the subfamily Picovirinae. Within the subfamily Picovirinae, the 29-like phages have been extensively studied, and their terminal protein-primed DNA replication is well characterized. Our data strongly suggest that YS61 also replicates by a protein-primed mechanism. Weissella phage YS61 is, however, markedly different from members of the Picovirinae with respect to genome size and morphology. Picovirinae are characterized by small (approximately 20-kb) genomes which contrasts with the 33,594-bp genome of YS61. Based on electron microscopy analysis, YS61 was classified as a member of the Podoviridae of morphotype C2, similar to the 29-like phages, but its capsid dimensions are significantly larger than those reported for these phages. The novelty of YS61 was also emphasized by the low number of open reading frames (ORFs) showing significant similarity to database sequences. We propose that the bacteriophage YS61 should represent a new subfamily within the family Podoviridae.

摘要

首次完整呈现了一株感染 Weissella cibaria(Weissella kimchii)的噬菌体的基因组序列。该噬菌体 YS61 是从韩国发酵蔬菜泡菜中分离得到的。噬菌体被认为是工业发酵中的严重问题;然而,YS61 与许多与食品发酵有关的烈性噬菌体不同,因为它很难繁殖,而且非常容易产生抗药性。序列分析表明,YS61 类似于尾噬菌体科的短尾噬菌体亚科。在短尾噬菌体亚科中,29 样噬菌体已被广泛研究,其末端蛋白引发的 DNA 复制得到了很好的描述。我们的数据强烈表明 YS61 也通过蛋白引发机制进行复制。然而,在基因组大小和形态方面,YS61 与 Picovirinae 成员明显不同。Picovirinae 的特征是基因组较小(约 20kb),而 YS61 的基因组大小为 33594bp。根据电子显微镜分析,YS61 被归类为尾噬菌体科 C2 形态的成员,类似于 29 样噬菌体,但它的衣壳尺寸明显大于这些噬菌体的报道尺寸。YS61 的新颖性还强调了其与数据库序列具有显著相似性的开放阅读框(ORFs)数量较少。我们提出,噬菌体 YS61 应该代表尾噬菌体科中的一个新的亚科。

相似文献

1
Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi.
Appl Environ Microbiol. 2012 Oct;78(20):7299-308. doi: 10.1128/AEM.00031-12. Epub 2012 Aug 10.
2
Comparative genomic analysis of Lactococcus garvieae phage WP-2, a new member of Picovirinae subfamily of Podoviridae.
Gene. 2014 Nov 10;551(2):222-9. doi: 10.1016/j.gene.2014.08.060. Epub 2014 Aug 29.
3
Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, belonging to the "phiKMV-like viruses".
Appl Environ Microbiol. 2011 May;77(10):3443-50. doi: 10.1128/AEM.00128-11. Epub 2011 Mar 18.
6
First genome sequences of Achromobacter phages reveal new members of the N4 family.
Virol J. 2014 Jan 27;11:14. doi: 10.1186/1743-422X-11-14.
7
Complete genome sequence of the podoviral bacteriophage ΦCP24R, which is virulent for Clostridium perfringens.
Arch Virol. 2012 Apr;157(4):769-72. doi: 10.1007/s00705-011-1218-2. Epub 2012 Jan 5.
8
Complete genome sequence of a novel, virulent Ahjdlikevirus bacteriophage that infects Enterococcus faecium.
Arch Virol. 2017 Dec;162(12):3843-3847. doi: 10.1007/s00705-017-3503-1. Epub 2017 Aug 16.
9
Complete genomic sequence of the Vibrio alginolyticus lytic bacteriophage PVA1.
Arch Virol. 2014 Dec;159(12):3447-51. doi: 10.1007/s00705-014-2207-z. Epub 2014 Aug 27.
10
Isolation and Genome Sequencing of a Novel Pseudoalteromonas Phage PH1.
Curr Microbiol. 2017 Feb;74(2):212-218. doi: 10.1007/s00284-016-1175-9. Epub 2016 Dec 9.

引用本文的文献

1
A Rare, Virulent Bacteriophage Susfortuna Is the First Isolated Bacteriophage in a New Viral Genus.
Phage (New Rochelle). 2020 Dec 1;1(4):230-236. doi: 10.1089/phage.2020.0038. Epub 2020 Dec 16.
2
Two Faces of Fermented Foods-The Benefits and Threats of Its Consumption.
Front Microbiol. 2022 Mar 7;13:845166. doi: 10.3389/fmicb.2022.845166. eCollection 2022.
3
Characterization of Prophages in Derived from Kimchi and Genomic Analysis of the Induced Prophage in .
J Microbiol Biotechnol. 2022 Mar 28;32(3):333-340. doi: 10.4014/jmb.2110.10046.
4
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production.
Appl Microbiol Biotechnol. 2021 Dec;105(23):8575-8592. doi: 10.1007/s00253-021-11509-2. Epub 2021 Oct 25.
6
Complete Genome Sequence of vB_EcoP_SU7, a Coliphage with the Rare C3 Morphotype.
Microorganisms. 2021 Jul 24;9(8):1576. doi: 10.3390/microorganisms9081576.
7
Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi.
Food Sci Biotechnol. 2021 Jul 6;30(7):949-957. doi: 10.1007/s10068-021-00930-y. eCollection 2021 Jul.
8
Characteristics on host specificity, infection, and temperature stability of phages from watery kimchi.
Food Sci Biotechnol. 2021 Jun 7;30(6):843-851. doi: 10.1007/s10068-021-00920-0. eCollection 2021 Jun.
9
The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome.
Front Cell Infect Microbiol. 2021 Jun 4;11:643214. doi: 10.3389/fcimb.2021.643214. eCollection 2021.
10
Viruses in fermented foods: are they good or bad? Two sides of the same coin.
Food Microbiol. 2021 Sep;98:103794. doi: 10.1016/j.fm.2021.103794. Epub 2021 Mar 25.

本文引用的文献

1
Growth inhibition of foodborne pathogens by kimchi prepared with bacteriocin-producing starter culture.
J Food Sci. 2011 Jan-Feb;76(1):M72-8. doi: 10.1111/j.1750-3841.2010.01965.x.
2
Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant.
J Bacteriol. 2011 May;193(9):2377-8. doi: 10.1128/JB.00183-11. Epub 2011 Mar 11.
4
Metagenomic analysis of kimchi, a traditional Korean fermented food.
Appl Environ Microbiol. 2011 Apr;77(7):2264-74. doi: 10.1128/AEM.02157-10. Epub 2011 Feb 11.
5
Easyfig: a genome comparison visualizer.
Bioinformatics. 2011 Apr 1;27(7):1009-10. doi: 10.1093/bioinformatics/btr039. Epub 2011 Jan 28.
6
CDD: a Conserved Domain Database for the functional annotation of proteins.
Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9. doi: 10.1093/nar/gkq1189. Epub 2010 Nov 24.
8
Prodigal: prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010 Mar 8;11:119. doi: 10.1186/1471-2105-11-119.
9
Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays.
Int J Food Microbiol. 2009 Mar 31;130(2):140-6. doi: 10.1016/j.ijfoodmicro.2009.01.007. Epub 2009 Jan 20.
10
Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles.
Methods Mol Biol. 2009;502:227-38. doi: 10.1007/978-1-60327-565-1_13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验