Suppr超能文献

不同果蝇物种的酵母群落:同一宿主中两种共生体群的比较。

Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts.

机构信息

Department of Evolution and Ecology and Center for Population Biology, University of California Davis, Davis, California, USA.

出版信息

Appl Environ Microbiol. 2012 Oct;78(20):7327-36. doi: 10.1128/AEM.01741-12. Epub 2012 Aug 10.

Abstract

The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach.

摘要

生态多样性与遗传和实验可操作性的结合使果蝇成为研究动物相关微生物群落的有力模型。尽管酵母在果蝇生理学、行为和适应性方面的重要性已被广泛认识,但最近的大多数研究都集中在果蝇与细菌的相互作用上。为了更全面地了解果蝇微生物组,我们对从世界各地收集的不同果蝇物种相关的酵母群落进行了特征描述。我们专注于子囊菌门,因为它构成了绝大多数与果蝇相关的酵母。我们的采样策略允许我们在同一宿主群体中比较酵母和细菌群落的分布和结构。我们表明,酵母群落主要由少数丰富的分类群组成,相同的酵母谱系与不同的宿主物种和种群相关,而宿主饮食对酵母群落组成的影响大于宿主物种。这些模式与在果蝇细菌群落中观察到的模式非常相似。然而,我们没有检测到同一宿主群体中酵母和细菌群落之间存在显著相关性。对不同共生群体的比较分析提供了宿主-微生物相互作用的更全面图景。未来对共生体群落在动物生理学、生态适应性和进化中的作用的研究将受益于类似的整体方法。

相似文献

1
Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts.
Appl Environ Microbiol. 2012 Oct;78(20):7327-36. doi: 10.1128/AEM.01741-12. Epub 2012 Aug 10.
2
Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system.
PLoS Genet. 2011 Sep;7(9):e1002272. doi: 10.1371/journal.pgen.1002272. Epub 2011 Sep 22.
3
Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees.
Mycol Res. 2008 Mar;112(Pt 3):331-44. doi: 10.1016/j.mycres.2007.10.014. Epub 2007 Nov 7.
4
Made for Each Other: Ascomycete Yeasts and Insects.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.FUNK-0081-2016.
7
The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions.
Fungal Biol. 2011 Oct;115(10):1077-91. doi: 10.1016/j.funbio.2010.11.006. Epub 2010 Dec 8.
8
Microbiome Structure of a Wild Community along Tropical Elevational Gradients and Comparison to Laboratory Lines.
Appl Environ Microbiol. 2023 May 31;89(5):e0009923. doi: 10.1128/aem.00099-23. Epub 2023 May 8.
9
Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae.
Sci Rep. 2020 Oct 6;10(1):16550. doi: 10.1038/s41598-020-73649-1.

引用本文的文献

1
Abiotic factors are the primary determinants of endemic Hawaiian microbiome assembly.
bioRxiv. 2025 May 11:2025.05.06.652154. doi: 10.1101/2025.05.06.652154.
2
Microbial Community Dynamics in Natural Drosophila melanogaster Populations Across Seasons.
Environ Microbiol. 2025 Jun;27(6):e70104. doi: 10.1111/1462-2920.70104.
3
symbionts in infection: when a friend becomes an enemy.
Infect Immun. 2025 May 13;93(5):e0051124. doi: 10.1128/iai.00511-24. Epub 2025 Apr 2.
4
Discovery and identification of a novel yeast species, sp. nov., from in Okinawa, Japan.
Int J Syst Evol Microbiol. 2025 Feb;75(2). doi: 10.1099/ijsem.0.006661.
5
Bacterial and fungal components of the microbiome have distinct roles in Hawaiian reproduction.
ISME Commun. 2024 Nov 4;4(1):ycae134. doi: 10.1093/ismeco/ycae134. eCollection 2024 Jan.
6
The microbiome analysis of ripen grape berries supports the complex etiology of sour rot.
Front Microbiol. 2024 Nov 7;15:1450443. doi: 10.3389/fmicb.2024.1450443. eCollection 2024.
7
Insights into the evolution of herbivory from a leaf-mining fly.
Ecosphere. 2024 Apr;15(4). doi: 10.1002/ecs2.4764. Epub 2024 Apr 23.
8
Live yeasts accelerate Drosophila melanogaster larval development.
J Exp Biol. 2024 Oct 1;227(19). doi: 10.1242/jeb.247932. Epub 2024 Oct 4.
10
First DNA Barcoding Survey in Bulgaria Unveiled Huge Diversity of Yeasts in Insects.
Insects. 2024 Jul 26;15(8):566. doi: 10.3390/insects15080566.

本文引用的文献

1
The vectoring of cactophilic yeasts by Drosophila.
Oecologia. 1988 Apr;75(3):400-404. doi: 10.1007/BF00376943.
3
Coadaptation ofDrosophila and yeasts in their natural habitat.
J Chem Ecol. 1986 May;12(5):1037-55. doi: 10.1007/BF01638995.
4
Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis.
Science. 2012 Jun 8;336(6086):1314-7. doi: 10.1126/science.1221789. Epub 2012 Jun 6.
5
Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries.
Appl Environ Microbiol. 2012 Jul;78(14):4869-73. doi: 10.1128/AEM.00841-12. Epub 2012 May 11.
6
Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling.
Science. 2011 Nov 4;334(6056):670-4. doi: 10.1126/science.1212782.
7
Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system.
PLoS Genet. 2011 Sep;7(9):e1002272. doi: 10.1371/journal.pgen.1002272. Epub 2011 Sep 22.
9
Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster.
Environ Microbiol. 2011 Jul;13(7):1889-900. doi: 10.1111/j.1462-2920.2011.02511.x. Epub 2011 Jun 1.
10
Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.
Science. 2011 May 20;332(6032):970-4. doi: 10.1126/science.1198719.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验