College of Materials Science and Engineering, State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
Phys Chem Chem Phys. 2012 Oct 5;14(37):13081-7. doi: 10.1039/c2cp41694h.
A novel body-centered tetragonal CN(2) (4 units per cell), named as bct-CN(2), has been predicted here using our newly developed particle swarm optimization algorithm for crystal structure prediction. Bct-CN(2) is energetically much superior (3.022 eV per f.u.) to previously proposed pyrite structure and stable against decomposition into a mixture of diamond + N(2) or 1/3(C(3)N(4) + N(2)) above 45.4 GPa. No imaginary phonon frequencies in the whole Brillouin zone indicate bct-CN(2) is dynamically stable. The electronic calculations indicate that bct-CN(2) is a wide gap dielectric material with an indirect band gap of 3.6 eV. The ideal tensile, shear, and compressive strength at large strains of bct-CN(2) are examined to understand further the microscopic mechanism of the structural deformation. Strikingly, it is found that bct-CN(2) has high calculated ideal strength, bulk modulus, shear modulus, and simulated hardness, indicating its very incompressible and superhard nature. The results provide new thoughts for designing and synthesizing novel superhard carbon nitrides, and insights for understanding the mechanical properties.
一种新的体心四方结构的 CN(2)(每个晶胞 4 个单位),命名为 bct-CN(2),是我们使用新开发的晶体结构预测粒子群优化算法预测得到的。bct-CN(2)的能量(每个单位 3.022 eV)比以前提出的黄铁矿结构优越得多,在 45.4 GPa 以上稳定,不会分解成金刚石+N(2)或 1/3(C(3)N(4)+N(2))的混合物。整个布里渊区没有虚频表明 bct-CN(2)是动力学稳定的。电子计算表明 bct-CN(2)是一种宽能隙介电材料,间接带隙为 3.6 eV。通过对大应变下 bct-CN(2)的理想拉伸、剪切和压缩强度的研究,进一步了解结构变形的微观机制。引人注目的是,发现 bct-CN(2)具有高计算理想强度、体弹性模量、剪切模量和模拟硬度,表明其具有不可压缩和超硬的性质。这些结果为设计和合成新型超硬碳氮化物提供了新的思路,并为理解其力学性能提供了新的思路。