Department of Engineering Mechanics, Wuhan University, Wuhan, Hubei, 430072, China.
Nat Commun. 2023 Jul 17;14(1):4258. doi: 10.1038/s41467-023-39826-2.
Determining bulk moduli is central to high-throughput screening of ultraincompressible materials. However, existing approaches are either too inaccurate or too expensive for general applications, or they are limited to narrow chemistries. Here we define a microscopic quantity to measure the atomic stiffness for each element in the periodic table. Based on this quantity, we derive an analytic formula for bulk modulus prediction. By analyzing numerous crystals from first-principles calculations, this formula shows superior accuracy, efficiency, universality, and interpretability compared to previous empirical/semiempirical formulae and machine learning models. Directed by our formula predictions and verified by first-principles calculations, 47 ultraincompressible crystals rivaling diamond are identified from over one million material candidates, which extends the family of known ultraincompressible crystals. Finally, treasure maps of possible elemental combinations for ultraincompressible crystals are created from our theory. This theory and insights provide guidelines for designing and discovering ultraincompressible crystals of the future.
确定体积弹性模量是高通量筛选超高压缩率材料的核心。然而,现有的方法要么过于不准确或过于昂贵,不适合一般应用,要么仅限于狭窄的化学领域。在这里,我们定义了一个微观量来衡量元素周期表中每个元素的原子刚度。基于这个量,我们推导出了一个体积弹性模量预测的解析公式。通过对大量第一性原理计算的晶体进行分析,与之前的经验/半经验公式和机器学习模型相比,该公式具有更高的准确性、效率、通用性和可解释性。根据我们的公式预测,并通过第一性原理计算进行验证,从超过 100 万个候选材料中确定了 47 种与钻石相媲美的超高压缩率晶体,从而扩展了已知超高压缩率晶体的家族。最后,从我们的理论中创建了超高压缩率晶体可能的元素组合的藏宝图。该理论和见解为设计和发现未来的超高压缩率晶体提供了指导。