Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Center for Materials Genomics, Duke University, Durham, North Carolina 27708, USA.
Nat Commun. 2017 Jun 5;8:15679. doi: 10.1038/ncomms15679.
Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.
虽然历史上材料的发现一直是通过艰苦的试错过程驱动的,但现在通过机器学习方法和材料数据库的合理组合,知识驱动的材料设计成为可能。在这里,从用于从头计算的 AFLOW 存储库中提取的数据与定量材料结构-性能关系模型相结合,以预测重要的属性:金属/绝缘体分类、带隙能、体/剪切模量、德拜温度和热容。该预测的准确性与几乎任何化学计量的无机晶体材料的训练数据质量相当,与可用的热机械实验数据相互印证。该方法的通用性归因于描述符的构建:带标签的材料片段。这些表示只需要最小的结构输入,允许简单启发式设计规则的直接实现。