Suppr超能文献

通过 FRET 检测到的染色体位点的紧密定位频率与它们在人类细胞中的致癌重排中的参与相关。

Frequency of close positioning of chromosomal loci detected by FRET correlates with their participation in carcinogenic rearrangements in human cells.

机构信息

Department of Pathology, University of Pittsburgh, PA 15261, USA.

出版信息

Genes Chromosomes Cancer. 2012 Nov;51(11):1037-44. doi: 10.1002/gcc.21988. Epub 2012 Aug 10.

Abstract

It has been well established that genes participating in oncogenic rearrangements are non-randomly positioned and frequently close to each other in human cell nuclei. However, the actual distance between these fusion partners has never been determined. The phenomenon of fluorescence resonance energy transfer (FRET) is observed when a donor fluorophore is close (<10 nm) to transfer some of it energy to an acceptor fluorophore. The aim of this study was to validate the use of FRET on directly labeled DNA molecules to assess the frequency of positioning at <10 nm distances between genes known to be involved in rearrangement and to correlate it with their probability to undergo rearrangement. In the validation experiments, the frequency of FRET-sensitized emission (SE) was found to be 93-96% between probes for the immediately adjacent chromosomal regions as compared to 0.1-0.2% between probes for the random loci located on large linear separation. Further, we found that the frequency of FRET-SE between four pairs of genes that form rearrangements in thyroid cancer was 5% for RET and CCDC6, 4% for RET and NCOA4, 2% for BRAF and AKAP9, and 2% for NTRK1 and TPR. Moreover, the frequency with which FRET was observed showed strong correlation (r = 0.9871) with the prevalence of respective rearrangements in thyroid cancer. Our findings demonstrate that FRET can be used as a technique to analyze proximity between specific DNA regions and that the frequency of gene positioning at distances allowing FRET correlates with their probability to undergo chromosomal rearrangements.

摘要

已经证实,参与致癌重排的基因在人类细胞核中是非随机定位的,并且经常彼此靠近。然而,这些融合伙伴之间的实际距离从未被确定过。当供体荧光团靠近(<10nm)时,会观察到荧光共振能量转移(FRET)现象,从而将其部分能量转移到受体荧光团上。本研究的目的是验证使用 FRET 直接标记 DNA 分子来评估已知参与重排的基因在<10nm 距离内定位的频率,并将其与它们发生重排的概率相关联。在验证实验中,与随机位于大线性分离的基因探针相比,立即相邻染色体区域的探针之间的 FRET 敏化发射(SE)频率为 93-96%,而随机位于大线性分离的基因探针之间的 FRET 敏化发射(SE)频率为 0.1-0.2%。此外,我们发现,在甲状腺癌中发生重排的四对基因(RET 和 CCDC6、RET 和 NCOA4、BRAF 和 AKAP9、NTRK1 和 TPR)之间 FRET-SE 的频率分别为 5%、4%、2%和 2%。此外,观察到的 FRET 频率与甲状腺癌中相应重排的流行程度具有很强的相关性(r=0.9871)。我们的研究结果表明,FRET 可用于分析特定 DNA 区域之间的接近程度,并且允许 FRET 的基因定位频率与它们发生染色体重排的概率相关。

相似文献

3
Proximity of TPR and NTRK1 rearranging loci in human thyrocytes.
Cancer Res. 2005 Apr 1;65(7):2572-6. doi: 10.1158/0008-5472.CAN-04-4294.
6
Pitfalls in RET Fusion Detection Using Break-Apart FISH Probes in Papillary Thyroid Carcinoma.
J Clin Endocrinol Metab. 2021 Mar 25;106(4):1129-1138. doi: 10.1210/clinem/dgaa913.
7
Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells.
Science. 2000 Oct 6;290(5489):138-41. doi: 10.1126/science.290.5489.138.
8
DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells.
Oncogene. 2010 Apr 15;29(15):2272-80. doi: 10.1038/onc.2009.502. Epub 2010 Jan 25.
9
Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma.
Mol Cell Endocrinol. 2010 May 28;321(1):36-43. doi: 10.1016/j.mce.2009.09.013. Epub 2009 Sep 18.

引用本文的文献

1
A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer.
Int J Mol Sci. 2021 Feb 9;22(4):1726. doi: 10.3390/ijms22041726.
2
Coding Molecular Determinants of Thyroid Cancer Development and Progression.
Endocrinol Metab Clin North Am. 2019 Mar;48(1):37-59. doi: 10.1016/j.ecl.2018.10.003. Epub 2018 Dec 23.
3
Genomic hallmarks of localized, non-indolent prostate cancer.
Nature. 2017 Jan 19;541(7637):359-364. doi: 10.1038/nature20788. Epub 2017 Jan 9.
4
A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma.
Nat Rev Endocrinol. 2016 Apr;12(4):192-202. doi: 10.1038/nrendo.2016.11. Epub 2016 Feb 12.
5
Oncogenic rearrangements driving ionizing radiation-associated human cancer.
J Clin Invest. 2013 Nov;123(11):4566-8. doi: 10.1172/JCI72725. Epub 2013 Oct 25.
6
Genetics and epigenetics of sporadic thyroid cancer.
Mol Cell Endocrinol. 2014 Apr 5;386(1-2):55-66. doi: 10.1016/j.mce.2013.07.030. Epub 2013 Aug 8.

本文引用的文献

1
Single-molecule analysis reveals three phases of DNA degradation by an exonuclease.
Nat Chem Biol. 2011 Jun;7(6):367-74. doi: 10.1038/nchembio.561. Epub 2011 May 8.
2
FRET in cell biology: still shining in the age of super-resolution?
Chemphyschem. 2011 Feb 25;12(3):484-90. doi: 10.1002/cphc.201000795. Epub 2010 Dec 29.
3
A practical approach to FRET-based PNA fluorescence in situ hybridization.
Methods. 2010 Dec;52(4):343-51. doi: 10.1016/j.ymeth.2010.07.010. Epub 2010 Jul 21.
5
Induced chromosomal proximity and gene fusions in prostate cancer.
Science. 2009 Nov 27;326(5957):1230. doi: 10.1126/science.1178124. Epub 2009 Oct 29.
6
Rearrangements of NTRK1 gene in papillary thyroid carcinoma.
Mol Cell Endocrinol. 2010 May 28;321(1):44-9. doi: 10.1016/j.mce.2009.10.009. Epub 2009 Oct 31.
10
A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2649-54. doi: 10.1073/pnas.0611503104. Epub 2007 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验