Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
J Am Chem Soc. 2012 Sep 12;134(36):14958-72. doi: 10.1021/ja305135u. Epub 2012 Aug 29.
We modeled nascent decomposition processes in cellulose pyrolysis at 327 and 600 °C using Car-Parrinello molecular dynamics (CPMD) simulations with rare events accelerated with the metadynamics method. We used a simulation cell comprised of two unit cells of cellulose Iβ periodically repeated in three dimensions to mimic the solid cellulose. To obtain initial conditions at reasonable densities, we extracted coordinates from larger classical NPT simulations at the target temperatures. CPMD-metadynamics implemented with various sets of collective variables, such as coordination numbers of the glycosidic oxygen, yielded a variety of chemical reactions such as depolymerization, fragmentation, ring opening, and ring contraction. These reactions yielded precursors to levoglucosan (LGA)-the major product of pyrolysis-and also to minor products such as 5-hydroxy-methylfurfural (HMF) and formic acid. At 327 °C, we found that depolymerization via ring contraction of the glucopyranose ring to the glucofuranose ring occurs with the lowest free-energy barrier (20 kcal/mol). We suggest that this process is key for formation of liquid intermediate cellulose, observed experimentally above 260 °C. At 600 °C, we found that a precursor to LGA (pre-LGA) forms with a free-energy barrier of 36 kcal/mol via an intermediate/transition state stabilized by anchimeric assistance and hydrogen bonding. Conformational freedom provided by expansion of the cellulose matrix at 600 °C was found to be crucial for formation of pre-LGA. We performed several comparison calculations to gauge the accuracy of CPMD-metadynamics barriers with respect to basis set and level of theory. We found that free-energy barriers at 600 °C are in the order pre-LGA < pre-HMF < formic acid, explaining why LGA is the kinetically favored product of fast cellulose pyrolysis.
我们使用 Car-Parrinello 分子动力学(CPMD)模拟和基于元动力学的稀有事件加速方法,在 327 和 600°C 下模拟纤维素热解过程中的新生分解过程。我们使用由两个纤维素 Iβ 单元周期性重复的三维模拟单元来模拟固体纤维素。为了在合理的密度下获得初始条件,我们从目标温度下的更大的经典 NPT 模拟中提取坐标。CPMD-metadynamics 采用了各种集合变量,如糖基氧的配位数,产生了多种化学反应,如解聚、碎片化、开环和环收缩。这些反应产生了左旋葡聚糖(LGA)——热解的主要产物——以及一些次要产物,如 5-羟甲基糠醛(HMF)和甲酸。在 327°C 时,我们发现通过葡萄糖吡喃环到呋喃葡萄糖环的环收缩进行解聚的自由能势垒最低(20 千卡/摩尔)。我们认为这个过程对于实验中观察到的 260°C 以上的液态中间纤维素的形成是关键的。在 600°C 时,我们发现 LGA 的前体(pre-LGA)通过由亲核辅助和氢键稳定的中间/过渡态形成,其自由能势垒为 36 千卡/摩尔。我们发现,600°C 时纤维素基质的扩展提供的构象自由度对于 pre-LGA 的形成至关重要。我们进行了几次比较计算,以评估 CPMD-metadynamics 势垒相对于基组和理论水平的准确性。我们发现 600°C 时的自由能势垒顺序为 pre-LGA < pre-HMF < 甲酸,这解释了为什么 LGA 是快速纤维素热解的动力学有利产物。