Suppr超能文献

木质纤维素固体废弃物的气体加压烘焙:纤维素的脱氧与芳构化机制

Gas-Pressurized Torrefaction of Lignocellulosic Solid Wastes: Deoxygenation and Aromatization Mechanisms of Cellulose.

作者信息

Shi Liu, Sun Yiming, Li Xian, Li Shuo, Peng Bing, Hu Zhenzhong, Hu Hongyun, Luo Guangqian, Yao Hong

机构信息

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Molecules. 2023 Nov 20;28(22):7671. doi: 10.3390/molecules28227671.

Abstract

A novel gas-pressurized (GP) torrefaction method at 250 °C has recently been developed that realizes the deep decomposition of cellulose in lignocellulosic solid wastes (LSW) to as high as 90% through deoxygenation and aromatization reactions. However, the deoxygenation and aromatization mechanisms are currently unclear. In this work, these mechanisms were studied through a developed molecular structure calculation method and the GP torrefaction of pure cellulose. The results demonstrate that GP torrefaction at 250 °C causes 47 wt.% of mass loss and 72 wt.% of O removal for cellulose, while traditional torrefaction at atmospheric pressure has almost no impact on cellulose decomposition. The GP-torrefied cellulose is determined to be composed of an aromatic furans nucleus with branch aliphatic C through conventional characterization. A molecular structure calculation method and its principles were developed for further investigation of molecular-level mechanisms. It was found 2-ring furans aromatic compound intermediate is formed by intra- and inter-molecular dehydroxylation reactions of amorphous cellulose, and the removal of O-containing function groups is mainly through the production of HO. The three-ring furans aromatic compound intermediate and GP-torrefied cellulose are further formed through the polymerization reaction, which enhances the removal of ketones and aldehydes function groups in intermediate torrefied cellulose and form gaseous CO and O-containing organic molecules. A deoxygenation and aromatization mechanism model was developed based on the above investigation. This work provides theoretical guidance for the optimization of the gas-pressurized torrefaction method and a study method for the determination of molecular-level structure and the mechanism investigation of the thermal conversion processes of LSW.

摘要

最近开发了一种新型的250℃气体加压(GP)烘焙方法,该方法通过脱氧和芳构化反应实现了木质纤维素固体废物(LSW)中纤维素的深度分解,分解率高达90%。然而,目前脱氧和芳构化机制尚不清楚。在这项工作中,通过开发的分子结构计算方法和纯纤维素的GP烘焙对这些机制进行了研究。结果表明,250℃的GP烘焙导致纤维素质量损失47 wt.%,氧去除72 wt.%,而传统的常压烘焙对纤维素分解几乎没有影响。通过常规表征确定,GP烘焙纤维素由带有支链脂肪族C的芳族呋喃核组成。开发了一种分子结构计算方法及其原理,以进一步研究分子水平的机制。发现无定形纤维素通过分子内和分子间的脱羟基反应形成2环呋喃芳族化合物中间体,含氧基的去除主要通过产生HO。三环呋喃芳族化合物中间体和GP烘焙纤维素通过聚合反应进一步形成,这增强了中间烘焙纤维素中酮和醛官能团的去除,并形成气态CO和含O有机分子。基于上述研究建立了脱氧和芳构化机制模型。这项工作为气体加压烘焙方法的优化以及LSW热转化过程分子水平结构测定和机制研究提供了理论指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/528f/10675035/2355375c656f/molecules-28-07671-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验