Seoane J A, Dorado J, Aguiar-Pulido V, Pazos A
Information and Communications Technologies Department, School of Computer Science, Campus de Elviña s/n., 15071 A Coruña, Spain. E-mail:
Yearb Med Inform. 2012;7:117-25.
In a near future, each person will incorporate his/her own sequenced genome in his/her electronic health record. In that precise moment, genomic medicine will be fundamental for clinical practice, as an essential key of personalized medicine. All the genomic data, as well as other 'omics' and clinical data necessary for personalized medicine, are stored in several distributed databases. Research and patient care require each time more biomedical data integration of several distributed heterogeneous datasources.
This work develops a comprehensive review of the most relevant works in biomedical data integration, specifically in genomic medical data, analyzing the evolution of architecture and integration techniques during the last 20 years, and its usage.
Most of these solutions, based on cross-linking, data warehouse or federated approaches, are suitable for specific domains. However, none of the models found in the literature is completely appropriate for a general biomedical data integration problem.
在不久的将来,每个人都将把自己的测序基因组纳入其电子健康记录中。在那个确切时刻,基因组医学将成为临床实践的基础,是个性化医疗的关键要素。所有的基因组数据以及个性化医疗所需的其他“组学”和临床数据都存储在多个分布式数据库中。研究和患者护理对多个分布式异构数据源的生物医学数据整合的需求日益增加。
这项工作对生物医学数据整合,特别是基因组医学数据方面最相关的研究进行了全面综述,分析了过去20年中架构和整合技术的发展及其应用。
这些基于交联、数据仓库或联邦方法的解决方案大多适用于特定领域。然而,文献中发现的模型都不完全适用于一般的生物医学数据整合问题。