Suppr超能文献

电子健康记录大数据深度表型分析。国际医学信息学协会基因组医学工作组的贡献。

EHR Big Data Deep Phenotyping. Contribution of the IMIA Genomic Medicine Working Group.

作者信息

Frey L J, Lenert L, Lopez-Campos G

机构信息

Lewis J Frey, Chair IMIA Genomic Medicine WG, Biomedical Informatics Center, Public Health Sciences, Associate Professor, Hollings Cancer Center, Research Member, Medical University of South Carolina, 135 Cannon Street, Suite 405K, MUSC 200, Charleston, SC 29425. USA, Tel: +1 843 792 4216, Fax: +1 843 792 5587, E-mail:

出版信息

Yearb Med Inform. 2014 Aug 15;9(1):206-11. doi: 10.15265/IY-2014-0006.

Abstract

OBJECTIVES

Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records.

METHODS

As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships.

CONCLUSIONS

Stead and colleagues' 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research.

摘要

目的

鉴于从患者基因型和表型数据中发现疾病驱动变异的速度不断加快,目标是提供使用大数据技术的方法,以支持病历中深度表型的定义。

方法

随着下一代测序技术使基因组信息的海量存储不断增加,深度表型分析的重要性日益凸显。医学领域基因组数据的增长以及电子健康记录(EHR)的采用,为将表型和基因型数据整合到病历中提供了独特的机会。利用临床发现和其他健康相关数据的集合来形成有意义表型的方法是一个活跃的研究领域。EHR中存储的纵向数据提供了丰富的信息,可用于构建患者的表型。我们关注EHR数据中围绕深度表型识别的数据整合这一实际问题。描述了使用大数据方法实现EHR事件的可扩展标记,可用于语义和时间相似性分析,以支持表型和基因型关系的识别。

结论

斯特德及其同事在2005年提出的利用轻量级标准搭乘硬件/处理能力提升的浪潮来提高软件系统生产力的概念,被描述为设计未来医疗保健系统的先驱。使用灵活标记的大数据解决方案为在基因型和表型研究中更好地利用处理能力来组织患者记录提供了一条途径。

相似文献

3
The use of electronic health records for psychiatric phenotyping and genomics.电子健康记录在精神表型和基因组学中的应用。
Am J Med Genet B Neuropsychiatr Genet. 2018 Oct;177(7):601-612. doi: 10.1002/ajmg.b.32548. Epub 2017 May 30.
8
High-throughput phenotyping with temporal sequences.高通量表型分析与时间序列。
J Am Med Inform Assoc. 2021 Mar 18;28(4):772-781. doi: 10.1093/jamia/ocaa288.
9
Chapter 13: Mining electronic health records in the genomics era.第十三章:基因组时代的电子健康记录挖掘。
PLoS Comput Biol. 2012;8(12):e1002823. doi: 10.1371/journal.pcbi.1002823. Epub 2012 Dec 27.

引用本文的文献

3
High-throughput phenotyping with temporal sequences.高通量表型分析与时间序列。
J Am Med Inform Assoc. 2021 Mar 18;28(4):772-781. doi: 10.1093/jamia/ocaa288.

本文引用的文献

7
Next-generation phenotyping of electronic health records.电子健康记录的下一代表型分析。
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.
10
Deep phenotyping for precision medicine.深度表型分析用于精准医学。
Hum Mutat. 2012 May;33(5):777-80. doi: 10.1002/humu.22080.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验