Institut National de la Santé et de la Recherche Médicale (INSERM), U952, 75005 Paris, France.
J Physiol. 2012 Oct 15;590(20):5183-98. doi: 10.1113/jphysiol.2012.230722. Epub 2012 Aug 13.
Neonates respond to hypoxia initially by increasing ventilation, and then by markedly decreasing both ventilation (hypoxic ventilatory decline) and oxygen consumption (hypoxic hypometabolism). This latter process, which vanishes with age, reflects a tight coupling between ventilatory and thermogenic responses to hypoxia. The neurological substrate of hypoxic hypometabolism is unclear, but it is known to be centrally mediated, with a strong involvement of the 5-hydroxytryptamine (5-HT, serotonin) system. To clarify this issue, we investigated the possible role of VGLUT3, the third subtype of vesicular glutamate transporter. VGLUT3 contributes to glutamate signalling by 5-HT neurons, facilitates 5-HT transmission and is expressed in strategic regions for respiratory and thermogenic control. We therefore assumed that VGLUT3 might significantly contribute to the response to hypoxia. To test this possibility, we analysed this response in newborn mice lacking VGLUT3 using anatomical, biochemical, electrophysiological and integrative physiology approaches. We found that the lack of VGLUT3 did not affect the histological organization of brainstem respiratory networks or respiratory activity under basal conditions. However, it impaired respiratory responses to 5-HT and anoxia, showing a marked alteration of central respiratory control. These impairments were associated with altered 5-HT turnover at the brainstem level. Furthermore, under cold conditions, the lack of VGLUT3 disrupted the metabolic rate, body temperature, baseline breathing and the ventilatory response to hypoxia. We conclude that VGLUT3 expression is dispensable under basal conditions but is required for optimal response to hypoxic stress in neonates.
新生儿最初通过增加通气来应对缺氧,然后通过明显降低通气(缺氧性通气下降)和耗氧量(缺氧性低代谢)来应对。这一过程随着年龄的增长而消失,反映了通气和产热对缺氧反应的紧密耦合。缺氧性低代谢的神经基础尚不清楚,但已知是中枢介导的,5-羟色胺(5-HT,血清素)系统参与度很强。为了阐明这个问题,我们研究了囊泡谷氨酸转运体 3(VGLUT3)的可能作用,这是囊泡谷氨酸转运体的第三种亚型。VGLUT3 通过 5-HT 神经元促进谷氨酸信号传递,促进 5-HT 传递,并且在呼吸和产热控制的关键区域表达。因此,我们假设 VGLUT3 可能对缺氧反应有重要贡献。为了验证这一可能性,我们使用解剖学、生物化学、电生理学和整合生理学方法分析了缺乏 VGLUT3 的新生小鼠的这种反应。我们发现缺乏 VGLUT3 并不影响脑干呼吸网络的组织学结构或基础条件下的呼吸活动。然而,它损害了对 5-HT 和缺氧的呼吸反应,显示出中枢呼吸控制的明显改变。这些损伤与脑干水平 5-HT 周转率的改变有关。此外,在寒冷条件下,缺乏 VGLUT3 会破坏代谢率、体温、基线呼吸和对缺氧的通气反应。我们得出结论,VGLUT3 的表达在基础条件下是可有可无的,但在新生儿应对缺氧应激时是必需的。