物理化学性质决定了纳米材料的细胞摄取、运输和命运。
Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
机构信息
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
出版信息
Acc Chem Res. 2013 Mar 19;46(3):622-31. doi: 10.1021/ar300031y. Epub 2012 Aug 14.
Although a growing number of innovations have emerged in the fields of nanobiotechnology and nanomedicine, new engineered nanomaterials (ENMs) with novel physicochemical properties are posing novel challenges to understand the full spectrum of interactions at the nano-bio interface. Because these could include potentially hazardous interactions, researchers need a comprehensive understanding of toxicological properties of nanomaterials and their safer design. In depth research is needed to understand how nanomaterial properties influence bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological responses. Toxicity of ENMs differ with their size and surface properties, and those connections hold true across a spectrum of in vitro to in vivo nano-bio interfaces. In addition, the in vitro results provide a basis for modeling the biokinetics and in vivo behavior of ENMs. Nonetheless, we must use caution in interpreting in vitro toxicity results too literally because of dosimetry differences between in vitro and in vivo systems as well the increased complexity of an in vivo environment. In this Account, we describe the impact of ENM physicochemical properties on cellular bioprocessing based on the research performed in our groups. Organic, inorganic, and hybrid ENMs can be produced in various sizes, shapes and surface modifications and a range of tunable compositions that can be dynamically modified under different biological and environmental conditions. Accordingly, we cover how ENM chemical properties such as hydrophobicity and hydrophilicity, material composition, surface functionalization and charge, dispersal state, and adsorption of proteins on the surface determine ENM cellular uptake, intracellular biotransformation, and bioelimination versus bioaccumulation. We review how physical properties such as size, aspect ratio, and surface area of ENMs influence the interactions of these materials with biological systems, thereby affecting their hazard potential. We discuss our actual experimental findings and show how these properties can be tuned to control the uptake, biotransformation, fate, and hazard of ENMs. This Account provides specific information about ENM biological behavior and safety issues. This research also assists the development of safer nanotherapeutics and guides the design of new materials that can execute novel functions at the nano-bio interface.
尽管在纳米生物技术和纳米医学领域出现了越来越多的创新,但具有新颖物理化学性质的新型工程纳米材料 (ENM) 给理解纳米-生物界面的全部相互作用带来了新的挑战。由于这些相互作用可能包括潜在的有害相互作用,因此研究人员需要全面了解纳米材料的毒理学特性及其更安全的设计。需要深入研究以了解纳米材料特性如何影响生物利用度、运输、命运、细胞摄取和有害生物反应的催化。ENM 的毒性因其尺寸和表面特性而异,这些关系在从体外到体内纳米-生物界面的一系列范围内都成立。此外,体外结果为建模 ENM 的生物动力学和体内行为提供了基础。尽管如此,由于体外和体内系统之间的剂量学差异以及体内环境的复杂性增加,我们在解释体外毒性结果时必须谨慎。在本账户中,我们根据我们小组的研究描述了 ENM 物理化学特性对细胞生物处理的影响。有机、无机和混合 ENM 可以以各种尺寸、形状和表面修饰以及一系列可调谐的组成生产,这些组成可以在不同的生物和环境条件下动态修改。因此,我们涵盖了 ENM 的化学特性,如疏水性和亲水性、材料组成、表面功能化和电荷、分散状态以及表面上蛋白质的吸附如何决定 ENM 的细胞摄取、细胞内生物转化、生物消除与生物积累。我们回顾了 ENM 的物理特性,如尺寸、纵横比和表面积如何影响这些材料与生物系统的相互作用,从而影响它们的危害潜力。我们讨论了我们的实际实验发现,并展示了如何调整这些特性来控制 ENM 的摄取、生物转化、命运和危害。本账户提供了有关 ENM 生物行为和安全问题的具体信息。这项研究还有助于开发更安全的纳米疗法,并指导设计可以在纳米-生物界面执行新功能的新材料。
相似文献
Acc Chem Res. 2012-8-14
Acc Chem Res. 2012-11-8
Methods Mol Biol. 2013
Ecotoxicol Environ Saf. 2018-6-30
Ecotoxicol Environ Saf. 2018-9-28
引用本文的文献
Environ Sci Technol. 2025-9-2
Int J Mol Sci. 2025-7-11
Adv Healthc Mater. 2025-6-29
本文引用的文献
Nat Nanotechnol. 2011-11-6
Proc Natl Acad Sci U S A. 2011-10-3
Angew Chem Int Ed Engl. 2011-6-20