Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
Hum Gene Ther. 2012 Nov;23(11):1186-99. doi: 10.1089/hum.2011.201.
Williams-Beuren syndrome (WBS) and supravalvular aortic stenosis (SVAS) are genetic syndromes marked by the propensity to develop severe vascular stenoses. Vascular lesions in both syndromes are caused by haploinsufficiency of the elastin gene. We used these distinct genetic syndromes as models to evaluate the feasibility of using engineered zinc-finger protein transcription factors (ZFPs) to achieve compensatory expression of haploinsufficient genes by inducing augmented expression from the remaining wild-type allele. For complex genes with multiple splice variants, this approach could have distinct advantages over cDNA-based gene replacement strategies. Targeting the elastin gene, we show that transcriptional activation by engineered ZFPs can induce compensatory expression from the wild-type allele in the setting of classic WBS and SVAS genetic mutations, increase elastin expression in wild-type cells, induce expression of the major elastin splice variants, and recapitulate their natural stoichiometry. Further, we establish that transcriptional activation of the mutant allele in SVAS does not overcome nonsense-mediated decay, and thus ZFP-mediated transcriptional activation is not likely to induce production of a mutant protein, a crucial consideration. Finally, we show in bioengineered blood vessels that ZFP-mediated induction of elastin expression is capable of stimulating functional elastogenesis. Haploinsufficiency is a common mechanism of genetic disease. These findings have significant implications for WBS and SVAS, and establish that haploinsufficiency can be overcome by targeted transcriptional activation without inducing protein expression from the mutant allele.
威廉姆斯-贝伦综合征(WBS)和主动脉瓣上狭窄(SVAS)是两种遗传综合征,其特征是易发生严重的血管狭窄。这两种综合征中的血管病变是由弹性蛋白基因单倍不足引起的。我们利用这两种不同的遗传综合征作为模型,评估了使用工程化锌指蛋白转录因子(ZFPs)通过诱导剩余野生型等位基因的增强表达来实现单倍不足基因补偿表达的可行性。对于具有多个剪接变体的复杂基因,这种方法可能比基于 cDNA 的基因替代策略具有明显的优势。针对弹性蛋白基因,我们表明,工程化 ZFPs 的转录激活可以在经典 WBS 和 SVAS 遗传突变的情况下诱导野生型等位基因的补偿表达,增加野生型细胞中的弹性蛋白表达,诱导主要弹性蛋白剪接变体的表达,并重现其天然的化学计量。此外,我们证实 SVAS 中突变等位基因的转录激活不能克服无意义介导的衰变,因此 ZFP 介导的转录激活不太可能诱导突变蛋白的产生,这是一个关键的考虑因素。最后,我们在生物工程化血管中表明,ZFPs 介导的弹性蛋白表达诱导能够刺激功能性弹性蛋白生成。单倍不足是遗传疾病的常见机制。这些发现对 WBS 和 SVAS 具有重要意义,并证实单倍不足可以通过靶向转录激活来克服,而不会诱导突变等位基因的蛋白表达。