Suppr超能文献

人工智能在角膜疾病中的应用:综述。

Artificial intelligence in corneal diseases: A narrative review.

机构信息

Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York City, NY, United States.

Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States.

出版信息

Cont Lens Anterior Eye. 2024 Dec;47(6):102284. doi: 10.1016/j.clae.2024.102284. Epub 2024 Aug 27.

Abstract

Corneal diseases represent a growing public health burden, especially in resource-limited settings lacking access to specialized eye care. Artificial intelligence (AI) offers promising solutions for automating the diagnosis and management of corneal conditions. This narrative review examines the application of AI in corneal diseases, focusing on keratoconus, infectious keratitis, pterygium, dry eye disease, Fuchs endothelial corneal dystrophy, and corneal transplantation. AI models integrating diverse imaging modalities (e.g., corneal topography, slit-lamp, and anterior segment OCT images) and clinical data have demonstrated high diagnostic accuracy, often outperforming human experts. Emerging trends include the incorporation of biomechanical data to enhance keratoconus detection, leveraging in vivo confocal microscopy for diagnosing infectious keratitis, and employing multimodal approaches for comprehensive disease analysis. Additionally, AI has shown potential in predicting disease progression, treatment outcomes, and postoperative complications in corneal transplantation. While challenges remain such as population heterogeneity, limited external validation, and the "black box" nature of some models, ongoing advancement in explainable AI, data augmentation, and improved regulatory frameworks can serve to address these limitations.

摘要

角膜疾病是一个日益严重的公共卫生负担,特别是在资源有限、无法获得专业眼科护理的环境中。人工智能(AI)为角膜疾病的诊断和管理自动化提供了有前途的解决方案。本综述探讨了 AI 在角膜疾病中的应用,重点关注圆锥角膜、感染性角膜炎、翼状胬肉、干眼症、Fuchs 内皮角膜营养不良和角膜移植。整合多种成像模式(如角膜地形图、裂隙灯和眼前节 OCT 图像)和临床数据的 AI 模型已经显示出较高的诊断准确性,通常优于人类专家。新兴趋势包括将生物力学数据纳入以提高圆锥角膜检测的准确性,利用活体共聚焦显微镜诊断感染性角膜炎,以及采用多模态方法进行全面的疾病分析。此外,AI 在预测角膜移植中的疾病进展、治疗效果和术后并发症方面也显示出潜力。尽管仍然存在一些挑战,如人群异质性、有限的外部验证以及某些模型的“黑箱”性质,但可解释 AI、数据增强和改进的监管框架的不断进步可以解决这些限制。

相似文献

1
Artificial intelligence in corneal diseases: A narrative review.
Cont Lens Anterior Eye. 2024 Dec;47(6):102284. doi: 10.1016/j.clae.2024.102284. Epub 2024 Aug 27.
2
Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review.
J Fr Ophtalmol. 2024 Sep;47(7):104242. doi: 10.1016/j.jfo.2024.104242. Epub 2024 Jul 15.
3
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
4
Artificial-Intelligence-Enhanced Analysis of In Vivo Confocal Microscopy in Corneal Diseases: A Review.
Diagnostics (Basel). 2024 Mar 26;14(7):694. doi: 10.3390/diagnostics14070694.
5
Artificial intelligence and corneal diseases.
Curr Opin Ophthalmol. 2022 Sep 1;33(5):407-417. doi: 10.1097/ICU.0000000000000885. Epub 2022 Jul 12.
6
Artificial Intelligence in Cornea, Refractive Surgery, and Cataract: Basic Principles, Clinical Applications, and Future Directions.
Asia Pac J Ophthalmol (Phila). 2021 Jul 1;10(3):268-281. doi: 10.1097/APO.0000000000000394.
7
Accuracy of artificial intelligence model for infectious keratitis classification: a systematic review and meta-analysis.
Front Public Health. 2023 Nov 24;11:1239231. doi: 10.3389/fpubh.2023.1239231. eCollection 2023.
8
Application of Artificial Intelligence in the Diagnosis and Management of Corneal Diseases.
Semin Ophthalmol. 2021 Nov 17;36(8):641-648. doi: 10.1080/08820538.2021.1893763. Epub 2021 Mar 9.
9
Artificial intelligence applications in different imaging modalities for corneal topography.
Surv Ophthalmol. 2022 May-Jun;67(3):801-816. doi: 10.1016/j.survophthal.2021.08.004. Epub 2021 Aug 25.

引用本文的文献

1
Clinical Applications of Artificial Intelligence in Corneal Diseases.
Vision (Basel). 2025 Aug 18;9(3):71. doi: 10.3390/vision9030071.
2
Enhancing medical students' diagnostic accuracy of infectious keratitis with AI-generated images.
BMC Med Educ. 2025 Jul 9;25(1):1027. doi: 10.1186/s12909-025-07592-y.
3
Current concepts and recent trends in endothelial keratoplasty.
World J Transplant. 2025 Jun 18;15(2):102507. doi: 10.5500/wjt.v15.i2.102507.
4
An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis.
J Nanobiotechnology. 2025 Mar 6;23(1):184. doi: 10.1186/s12951-025-03230-3.
6
Artificial Intelligence in Dry Eye Disease: A Narrative Review.
Cureus. 2024 Sep 23;16(9):e70056. doi: 10.7759/cureus.70056. eCollection 2024 Sep.

本文引用的文献

3
Deep learning model for extensive smartphone-based diagnosis and triage of cataracts and multiple corneal diseases.
Br J Ophthalmol. 2024 Sep 20;108(10):1406-1413. doi: 10.1136/bjo-2023-324488.
6
Updates in Diagnostic Imaging for Infectious Keratitis: A Review.
Diagnostics (Basel). 2023 Oct 31;13(21):3358. doi: 10.3390/diagnostics13213358.
7
Assessing the Impact of Image Quality on Deep Learning Classification of Infectious Keratitis.
Ophthalmol Sci. 2023 May 16;3(4):100331. doi: 10.1016/j.xops.2023.100331. eCollection 2023 Dec.
8
Multimodal diagnostics for keratoconus and ectatic corneal diseases: a paradigm shift.
Eye Vis (Lond). 2023 Nov 3;10(1):45. doi: 10.1186/s40662-023-00363-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验