Suppr超能文献

基于数据分辨率的近红外漫射光学层析成像数据采集策略优化

Data-resolution based optimization of the data-collection strategy for near infrared diffuse optical tomography.

作者信息

Karkala Deepak, Yalavarthy Phaneendra K

机构信息

Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India.

出版信息

Med Phys. 2012 Aug;39(8):4715-25. doi: 10.1118/1.4736820.

Abstract

PURPOSE

To optimize the data-collection strategy for diffuse optical tomography and to obtain a set of independent measurements among the total measurements using the model based data-resolution matrix characteristics.

METHODS

The data-resolution matrix is computed based on the sensitivity matrix and the regularization scheme used in the reconstruction procedure by matching the predicted data with the actual one. The diagonal values of data-resolution matrix show the importance of a particular measurement and the magnitude of off-diagonal entries shows the dependence among measurements. Based on the closeness of diagonal value magnitude to off-diagonal entries, the independent measurements choice is made. The reconstruction results obtained using all measurements were compared to the ones obtained using only independent measurements in both numerical and experimental phantom cases. The traditional singular value analysis was also performed to compare the results obtained using the proposed method.

RESULTS

The results indicate that choosing only independent measurements based on data-resolution matrix characteristics for the image reconstruction does not compromise the reconstructed image quality significantly, in turn reduces the data-collection time associated with the procedure. When the same number of measurements (equivalent to independent ones) are chosen at random, the reconstruction results were having poor quality with major boundary artifacts. The number of independent measurements obtained using data-resolution matrix analysis is much higher compared to that obtained using the singular value analysis.

CONCLUSIONS

The data-resolution matrix analysis is able to provide the high level of optimization needed for effective data-collection in diffuse optical imaging. The analysis itself is independent of noise characteristics in the data, resulting in an universal framework to characterize and optimize a given data-collection strategy.

摘要

目的

优化漫射光学层析成像的数据采集策略,并利用基于模型的数据分辨率矩阵特性在总测量中获得一组独立测量值。

方法

通过将预测数据与实际数据进行匹配,基于重建过程中使用的灵敏度矩阵和正则化方案计算数据分辨率矩阵。数据分辨率矩阵的对角值显示特定测量的重要性,非对角元素的值的大小显示测量之间的相关性。根据对角值大小与非对角元素的接近程度,进行独立测量的选择。在数值和实验模型情况下,将使用所有测量值获得的重建结果与仅使用独立测量值获得的重建结果进行比较。还进行了传统的奇异值分析以比较使用所提出方法获得的结果。

结果

结果表明,基于数据分辨率矩阵特性仅选择独立测量值进行图像重建不会显著损害重建图像质量,进而减少了与该过程相关的数据采集时间。当随机选择相同数量的测量值(相当于独立测量值)时,重建结果质量较差,存在主要的边界伪影。与使用奇异值分析获得的独立测量值数量相比,使用数据分辨率矩阵分析获得的独立测量值数量要高得多。

结论

数据分辨率矩阵分析能够为漫射光学成像中的有效数据采集提供所需的高水平优化。该分析本身与数据中的噪声特性无关,从而形成了一个通用框架来表征和优化给定的数据采集策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验