Suppr超能文献

优化脑扩散光学断层扫描图像重建的正则化方法。

Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography.

作者信息

Habermehl Christina, Steinbrink Jens, Müller Klaus-Robert, Haufe Stefan

机构信息

Berlin Institute of Technology, Department of Computer Science, Machine Learning Group, Marchstraße 23, Berlin 10587, GermanybBernstein Focus Neurotechnology, Department of Computer Science, Marchstraße 23, Berlin 10587, GermanycCharité University Medicin.

Bernstein Focus Neurotechnology, Department of Computer Science, Marchstraße 23, Berlin 10587, GermanydCharité University Medicine, Center for Stroke Research, Charitéplatz 1, Berlin 10117, Germany.

出版信息

J Biomed Opt. 2014 Sep;19(9):96006. doi: 10.1117/1.JBO.19.9.096006.

Abstract

Functional near-infrared spectroscopy (fNIRS) is an optical method for noninvasively determining brain activation by estimating changes in the absorption of near-infrared light. Diffuse optical tomography (DOT) extends fNIRS by applying overlapping “high density” measurements, and thus providing a three-dimensional imaging with an improved spatial resolution. Reconstructing brain activation images with DOT requires solving an underdetermined inverse problem with far more unknowns in the volume than in the surface measurements. All methods of solving this type of inverse problem rely on regularization and the choice of corresponding regularization or convergence criteria. While several regularization methods are available, it is unclear how well suited they are for cerebral functional DOT in a semi-infinite geometry. Furthermore, the regularization parameter is often chosen without an independent evaluation, and it may be tempting to choose the solution that matches a hypothesis and rejects the other. In this simulation study, we start out by demonstrating how the quality of cerebral DOT reconstructions is altered with the choice of the regularization parameter for different methods. To independently select the regularization parameter, we propose a cross-validation procedure which achieves a reconstruction quality close to the optimum. Additionally, we compare the outcome of seven different image reconstruction methods for cerebral functional DOT. The methods selected include reconstruction procedures that are already widely used for cerebral DOT [minimum l2-norm estimate (l2MNE) and truncated singular value decomposition], recently proposed sparse reconstruction algorithms [minimum l1- and a smooth minimum l0-norm estimate (l1MNE, l0MNE, respectively)] and a depth- and noise-weighted minimum norm (wMNE). Furthermore, we expand the range of algorithms for DOT by adapting two EEG-source localization algorithms [sparse basis field expansions and linearly constrained minimum variance (LCMV) beamforming]. Independent of the applied noise level, we find that the LCMV beamformer is best for single spot activations with perfect location and focality of the results, whereas the minimum l1-norm estimate succeeds with multiple targets.

摘要

功能近红外光谱(fNIRS)是一种光学方法,通过估计近红外光吸收的变化来无创地确定大脑激活情况。扩散光学断层扫描(DOT)通过应用重叠的“高密度”测量扩展了fNIRS,从而提供具有更高空间分辨率的三维成像。用DOT重建大脑激活图像需要解决一个欠定逆问题,该问题中体积内的未知数比表面测量中的未知数多得多。解决这类逆问题的所有方法都依赖于正则化以及相应正则化或收敛标准的选择。虽然有几种正则化方法可用,但尚不清楚它们对半无限几何形状中的脑功能DOT有多适合。此外,正则化参数通常在没有独立评估的情况下选择,而且可能会倾向于选择与假设匹配而拒绝其他假设的解决方案。在本模拟研究中,我们首先展示了不同方法的正则化参数选择如何改变脑DOT重建的质量。为了独立选择正则化参数,我们提出了一种交叉验证程序,该程序实现的重建质量接近最优。此外,我们比较了七种不同的脑功能DOT图像重建方法的结果。所选方法包括已广泛用于脑DOT的重建程序[最小l2范数估计(l2MNE)和截断奇异值分解]、最近提出的稀疏重建算法[分别为最小l1范数和平滑最小l0范数估计(l1MNE、l0MNE)]以及深度和噪声加权最小范数(wMNE)。此外,我们通过改编两种脑电图源定位算法[稀疏基场展开和线性约束最小方差(LCMV)波束形成]来扩展DOT的算法范围。与所应用的噪声水平无关,我们发现LCMV波束形成器对于结果具有完美位置和聚焦性的单点激活最为适用,而最小l1范数估计在多个目标的情况下取得成功。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验