Suppr超能文献

在图形处理器(GPU)上用于二维到三维配准的快速数字重建放射影像(DRR)生成

Fast DRR generation for 2D to 3D registration on GPUs.

作者信息

Tornai Gábor János, Cserey György, Pappas Ion

机构信息

Faculty of Information Technology, Pázmány Péter Catholic University, Práter u. 50/a, H-1083, Budapest, Hungary.

出版信息

Med Phys. 2012 Aug;39(8):4795-9. doi: 10.1118/1.4736827.

Abstract

PURPOSE

The generation of digitally reconstructed radiographs (DRRs) is the most time consuming step on the CPU in intensity based two-dimensional x-ray to three-dimensional (CT or 3D rotational x-ray) medical image registration, which has application in several image guided interventions. This work presents optimized DRR rendering on graphical processor units (GPUs) and compares performance achievable on four commercially available devices.

METHODS

A ray-cast based DRR rendering was implemented for a 512 × 512 × 72 CT volume. The block size parameter was optimized for four different GPUs for a region of interest (ROI) of 400 × 225 pixels with different sampling ratios (1.1%-9.1% and 100%). Performance was statistically evaluated and compared for the four GPUs. The method and the block size dependence were validated on the latest GPU for several parameter settings with a public gold standard dataset (512 × 512 × 825 CT) for registration purposes.

RESULTS

Depending on the GPU, the full ROI is rendered in 2.7-5.2 ms. If sampling ratio of 1.1%-9.1% is applied, execution time is in the range of 0.3-7.3 ms. On all GPUs, the mean of the execution time increased linearly with respect to the number of pixels if sampling was used.

CONCLUSIONS

The presented results outperform other results from the literature. This indicates that automatic 2D to 3D registration, which typically requires a couple of hundred DRR renderings to converge, can be performed quasi on-line, in less than a second or depending on the application and hardware in less than a couple of seconds. Accordingly, a whole new field of applications is opened for image guided interventions, where the registration is continuously performed to match the real-time x-ray.

摘要

目的

在基于强度的二维X射线到三维(CT或三维旋转X射线)医学图像配准中,生成数字重建射线照片(DRR)是CPU上最耗时的步骤,该配准在多种图像引导介入手术中都有应用。本文展示了在图形处理器(GPU)上对DRR渲染的优化,并比较了在四款商用设备上可实现的性能。

方法

针对一个512×512×72的CT容积实施了基于光线投射的DRR渲染。针对四款不同的GPU,对大小为400×225像素、具有不同采样率(1.1%-9.1%和100%)的感兴趣区域(ROI)优化了块大小参数。对这四款GPU的性能进行了统计学评估和比较。使用一个公共金标准数据集(512×512×825 CT),针对多种参数设置,在最新的GPU上对该方法和块大小依赖性进行了用于配准目的的验证。

结果

根据GPU的不同,完整ROI的渲染时间为2.7 - 5.2毫秒。如果应用1.1%-9.1%的采样率,执行时间在0.3 - 7.3毫秒范围内。在所有GPU上,如果使用采样,执行时间的平均值随像素数量呈线性增加。

结论

本文给出的结果优于文献中的其他结果。这表明通常需要几百次DRR渲染才能收敛的自动二维到三维配准可以在不到一秒的时间内准在线完成,或者根据应用和硬件情况在不到几秒内完成。因此,为图像引导介入手术开辟了一个全新的应用领域,在该领域中可以持续进行配准以匹配实时X射线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验