Suppr超能文献

基于高性能 GPU 的实时渲染,用于放射肿瘤学中的刚性 2D/3D 图像配准和运动预测。

High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology.

机构信息

Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.

出版信息

Z Med Phys. 2012 Feb;22(1):13-20. doi: 10.1016/j.zemedi.2011.06.002. Epub 2011 Jul 22.

Abstract

A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT.

摘要

在肺癌以及其他恶性疾病的图像引导放射治疗(IGRT)中,一个常见的问题是在剂量输送过程中补偿周期性和非周期性运动。现代的图像引导放射肿瘤学系统允许在治疗室中获取锥形束计算机断层摄影数据,以及在治疗过程中获取平面射线照片。中期研究目标是通过 2D/3D 配准来补偿肿瘤靶区运动。在 2D/3D 配准中,通过迭代比较透视体积渲染(所谓的数字渲染射线照片(DRR)),从 CT 体积数据和平面参考 X 射线中得出器官位置的空间信息。目前,该渲染过程非常耗时,实时配准(应至少在不到一秒的时间内提供器官位置数据)尚未实现。我们提出了两种基于 GPU 的渲染算法,可在大约 100 Hz 的速度下从大小为 53 MB 的 CT 数据集生成 512×512 像素大小的 DRR。通过应用许多算法简化,包括替代的体积驱动渲染方法(即所谓的摆动平铺)以及通过专门的光线投射技术对 DRR 图像进行子采样,从而实现了这种渲染速率。此外,还相应地利用了通用图形处理单元(GPGPU)编程范例。详细测量和分析了渲染质量和性能以及对整体配准过程质量和性能的影响。结果表明,这两种方法都具有竞争力,为刚性甚至可能非刚性 2D/3D 配准以及在此基础上的 IGRT 中的运动模型自适应滤波铺平了道路。

相似文献

6
Fast DRR generation for 2D/3D registration.用于二维/三维配准的快速数字重建放射影像生成
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):960-7. doi: 10.1007/11566489_118.
8
Monitoring tumor motion by real time 2D/3D registration during radiotherapy.放疗过程中实时二维/三维配准监测肿瘤运动。
Radiother Oncol. 2012 Feb;102(2):274-80. doi: 10.1016/j.radonc.2011.07.031. Epub 2011 Aug 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验