Cardiff University, School of Optometry & Vision Sciences, Maindy Road, Cardiff, CF24 4LU, United Kingdom.
J Biomed Opt. 2012 Jul;17(7):077007. doi: 10.1117/1.JBO.17.7.077007.
Dispersion encoded full-range (DEFR) frequency-domain optical coherence tomography (FD-OCT) and its enhanced version, fast DEFR, utilize dispersion mismatch between sample and reference arm to eliminate the ambiguity in OCT signals caused by non-complex valued spectral measurement, thereby numerically doubling the usable information content. By iteratively suppressing asymmetrically dispersed complex conjugate artifacts of OCT-signal pulses the complex valued signal can be recovered without additional measurements, thus doubling the spatial signal range to cover the full positive and negative sampling range. Previously the computational complexity and low processing speed limited application of DEFR to smaller amounts of data and did not allow for interactive operation at high resolution. We report a graphics processing unit (GPU)-based implementation of fast DEFR, which significantly improves reconstruction speed by a factor of more than 90 in respect to CPU-based processing and thereby overcomes these limitations. Implemented on a commercial low-cost GPU, a display line rate of ∼21,000 depth scans/s for 2048 samples/depth scan using 10 iterations of the fast DEFR algorithm has been achieved, sufficient for real-time visualization in situ.
基于频域光学相干层析术的全范围弥散编码(FD-OCT)及其增强版本快速全范围弥散编码(fast DEFR)利用样品臂和参考臂之间的色散失配来消除 OCT 信号中由非复值光谱测量引起的模糊性,从而将可用信息量数值倍增。通过迭代抑制 OCT 信号脉冲的不对称色散复共轭伪影,可以在不进行额外测量的情况下恢复复值信号,从而将空间信号范围扩展一倍,以覆盖完整的正、负采样范围。以前,由于计算复杂性和低处理速度的限制,DEFR 的应用仅限于少量数据,并且不允许在高分辨率下进行交互式操作。我们报告了一种基于图形处理单元(GPU)的 fast DEFR 实现方法,与基于 CPU 的处理相比,该方法的重建速度提高了 90 多倍,从而克服了这些限制。在商业低成本 GPU 上实现了一种方法,该方法使用 10 次 fast DEFR 算法迭代,在 2048 个深度扫描/深度扫描中实现了约 21000 个深度扫描/秒的显示线速率,足以进行实时原位可视化。