Suppr超能文献

基因工程荧光电压报告器。

Genetically engineered fluorescent voltage reporters.

机构信息

Knöpfel lab for Neuronal Circuit Dynamics, RIKEN Brain Science Institute , 2-1 Hirosawa, Wako City, Saitama, 351-0198 Japan.

出版信息

ACS Chem Neurosci. 2012 Aug 15;3(8):585-92. doi: 10.1021/cn300041b. Epub 2012 Jun 6.

Abstract

Fluorescent membrane voltage indicators that enable optical imaging of neuronal circuit operations in the living mammalian brain are powerful tools for biology and particularly neuroscience. Classical voltage-sensitive dyes, typically low molecular-weight organic compounds, have been in widespread use for decades but are limited by issues related to optical noise, the lack of generally applicable procedures that enable staining of specific cell populations, and difficulties in performing imaging experiments over days and weeks. Genetically encoded voltage indicators (GEVIs) represent a newer alternative that overcomes several of the limitations inherent to classical voltage-sensitive dyes. We critically review the fundamental concepts of this approach, the variety of available probes and their state of development.

摘要

荧光膜电压指示剂使在活体哺乳动物大脑中光学成像神经元回路操作成为可能,是生物学,尤其是神经科学的有力工具。经典的电压敏感染料,通常是低分子量的有机化合物,已经广泛使用了几十年,但受到与光学噪声相关的问题的限制,缺乏能够对特定细胞群体进行染色的普遍适用的程序,并且在数天和数周内进行成像实验存在困难。遗传编码的电压指示剂 (GEVI) 代表了一种新的替代方法,克服了经典电压敏感染料固有的一些局限性。我们批判性地回顾了这种方法的基本概念、可用探针的种类及其发展状况。

相似文献

1
Genetically engineered fluorescent voltage reporters.
ACS Chem Neurosci. 2012 Aug 15;3(8):585-92. doi: 10.1021/cn300041b. Epub 2012 Jun 6.
2
Genetically encoded voltage indicators for large scale cortical imaging come of age.
Curr Opin Chem Biol. 2015 Aug;27:75-83. doi: 10.1016/j.cbpa.2015.06.006. Epub 2015 Jun 24.
3
Optogenetic monitoring of membrane potentials.
Exp Physiol. 2011 Jan;96(1):13-8. doi: 10.1113/expphysiol.2010.053942. Epub 2010 Sep 17.
4
Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators.
Curr Opin Chem Biol. 2015 Aug;27:31-8. doi: 10.1016/j.cbpa.2015.05.003. Epub 2015 Jun 12.
5
Genetic voltage indicators.
BMC Biol. 2019 Sep 12;17(1):71. doi: 10.1186/s12915-019-0682-0.
6
Imaging Neuronal Activity with Fast and Sensitive Red-Shifted Electrochromic FRET Indicators.
ACS Chem Neurosci. 2019 Dec 18;10(12):4768-4775. doi: 10.1021/acschemneuro.9b00501. Epub 2019 Nov 21.
7
The evolving capabilities of rhodopsin-based genetically encoded voltage indicators.
Curr Opin Chem Biol. 2015 Aug;27:84-9. doi: 10.1016/j.cbpa.2015.05.006. Epub 2015 Jul 2.
8
Small molecule fluorescent voltage indicators for studying membrane potential.
Curr Opin Chem Biol. 2016 Aug;33:74-80. doi: 10.1016/j.cbpa.2016.06.003. Epub 2016 Jun 16.
9
Bright and photostable chemigenetic indicators for extended in vivo voltage imaging.
Science. 2019 Aug 16;365(6454):699-704. doi: 10.1126/science.aav6416. Epub 2019 Aug 1.
10
Genetically encoded probes for optical imaging of brain electrical activity.
Prog Brain Res. 2012;196:63-77. doi: 10.1016/B978-0-444-59426-6.00004-5.

引用本文的文献

1
Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.
J Microsc. 2025 May;298(2):123-184. doi: 10.1111/jmi.13270. Epub 2024 Feb 15.
2
Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine.
Adv Sci (Weinh). 2024 Jan;11(1):e2304110. doi: 10.1002/advs.202304110. Epub 2023 Nov 20.
3
Tools to measure membrane potential of neurons.
Biomed J. 2022 Oct;45(5):749-762. doi: 10.1016/j.bj.2022.05.007. Epub 2022 Jun 3.
4
Advances and prospects of rhodopsin-based optogenetics in plant research.
Plant Physiol. 2021 Oct 5;187(2):572-589. doi: 10.1093/plphys/kiab338.
5
Real Time Generation of Three Dimensional Patterns for Multiphoton Stimulation.
Front Cell Neurosci. 2021 Feb 24;15:609505. doi: 10.3389/fncel.2021.609505. eCollection 2021.
7
Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks.
iScience. 2020 Aug 21;23(8):101434. doi: 10.1016/j.isci.2020.101434. Epub 2020 Aug 5.
8
Interrogating Cellular Communication in Cancer with Genetically Encoded Imaging Reporters.
Radiol Imaging Cancer. 2020 Jul 31;2(4):e190053. doi: 10.1148/rycan.2020190053.
9
Photocycle Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1.
Int J Mol Sci. 2019 Dec 25;21(1):160. doi: 10.3390/ijms21010160.

本文引用的文献

1
From circuits to behavior: a bridge too far?
Nat Neurosci. 2012 Mar 27;15(4):507-9. doi: 10.1038/nn.3043.
3
Imaging calcium in neurons.
Neuron. 2012 Mar 8;73(5):862-85. doi: 10.1016/j.neuron.2012.02.011.
4
Optical imaging of voltage and calcium in cardiac cells & tissues.
Circ Res. 2012 Feb 17;110(4):609-23. doi: 10.1161/CIRCRESAHA.111.247494.
5
Genetically encoded probes for optical imaging of brain electrical activity.
Prog Brain Res. 2012;196:63-77. doi: 10.1016/B978-0-444-59426-6.00004-5.
6
Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2114-9. doi: 10.1073/pnas.1120694109. Epub 2012 Jan 24.
7
The microbial opsin family of optogenetic tools.
Cell. 2011 Dec 23;147(7):1446-57. doi: 10.1016/j.cell.2011.12.004.
8
Optical recording of action potentials in mammalian neurons using a microbial rhodopsin.
Nat Methods. 2011 Nov 27;9(1):90-5. doi: 10.1038/nmeth.1782.
9
Screening action potentials: the power of light.
Front Pharmacol. 2011 Jul 28;2:42. doi: 10.3389/fphar.2011.00042. eCollection 2011.
10
Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein.
Science. 2011 Jul 15;333(6040):345-8. doi: 10.1126/science.1204763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验