文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米技术与癌症生物电学:连接生物学与转化医学的桥梁。

Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine.

机构信息

Istituto Italiano di Tecnologia, CCT@Morego, Genoa, 16163, Italy.

出版信息

Adv Sci (Weinh). 2024 Jan;11(1):e2304110. doi: 10.1002/advs.202304110. Epub 2023 Nov 20.


DOI:10.1002/advs.202304110
PMID:37984883
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10767462/
Abstract

Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.

摘要

生物电能是存在于活细胞和组织内的电活动。这种活动对于调节细胞内稳态的功能和通讯至关重要,而相同的活动的中断可能导致各种疾病,包括癌症。与健康细胞相比,癌细胞被认为表现出异常的电学特性,这促使研究人员研究利用生物电能作为癌症诊断、预后和治疗工具的潜力。同时,生物电能是获得关于电信号和电荷在癌症发生、生长和进展中所起作用的基本认识的手段之一。本综述对该领域的文献进行了全面分析,阐述了单个癌细胞、癌细胞群体和癌组织中的生物电能基本原理。介绍了生物电能在癌症增殖和转移中的新兴作用。鉴于由于生物学发现和转化医学之间的差距,这种生物学信息仍然难以获取,因此检查了细胞电生理学领域纳米技术的最新进展,以及针对生物电能的癌症诊断和治疗的微纳器件的最新发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/d9f90c411078/ADVS-11-2304110-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/dd22c4ff269a/ADVS-11-2304110-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/dacb1ae3cb10/ADVS-11-2304110-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/71f05b981399/ADVS-11-2304110-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/b046c72ec62a/ADVS-11-2304110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/4ac385ad88f1/ADVS-11-2304110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/7bcf15714a3a/ADVS-11-2304110-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/309ba6938a7f/ADVS-11-2304110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/984252405262/ADVS-11-2304110-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/cdbb0f964afd/ADVS-11-2304110-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/fe38f405867c/ADVS-11-2304110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/e8043413ca1b/ADVS-11-2304110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/d7dcdfd27958/ADVS-11-2304110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/cd55c79d2131/ADVS-11-2304110-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/b6f798fcc81b/ADVS-11-2304110-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/ceedcf33fc1f/ADVS-11-2304110-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/7bddbb7ccdb2/ADVS-11-2304110-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/d9f90c411078/ADVS-11-2304110-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/dd22c4ff269a/ADVS-11-2304110-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/dacb1ae3cb10/ADVS-11-2304110-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/71f05b981399/ADVS-11-2304110-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/b046c72ec62a/ADVS-11-2304110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/4ac385ad88f1/ADVS-11-2304110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/7bcf15714a3a/ADVS-11-2304110-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/309ba6938a7f/ADVS-11-2304110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/984252405262/ADVS-11-2304110-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/cdbb0f964afd/ADVS-11-2304110-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/fe38f405867c/ADVS-11-2304110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/e8043413ca1b/ADVS-11-2304110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/d7dcdfd27958/ADVS-11-2304110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/cd55c79d2131/ADVS-11-2304110-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/b6f798fcc81b/ADVS-11-2304110-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/ceedcf33fc1f/ADVS-11-2304110-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/7bddbb7ccdb2/ADVS-11-2304110-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d0/10767462/d9f90c411078/ADVS-11-2304110-g010.jpg

相似文献

[1]
Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine.

Adv Sci (Weinh). 2024-1

[2]
Bioelectricity in dental medicine: a narrative review.

Biomed Eng Online. 2024-1-3

[3]
Nanotechnology: an evidence-based analysis.

Ont Health Technol Assess Ser. 2006

[4]
Bioelectricity, Its Fundamentals, Characterization Methodology, and Applications in Nano-Bioprobing and Cancer Diagnosis.

Adv Biosyst. 2019-10

[5]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[6]
Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model.

Cells. 2023-4-13

[7]
The significance of bioelectricity on all levels of organization of an organism. Part 1: From the subcellular level to cells.

Prog Biophys Mol Biol. 2023-1

[8]
Mechanisms Underlying Influence of Bioelectricity in Development.

Front Cell Dev Biol. 2022-2-14

[9]
"Bioelectricity in Development, Regeneration, and Cancers" Cell Bio 2023: A Joint Meeting of the American Society of Cell Biology and European Molecular Biology Organization December 2-6, 2023, in Boston, MA, USA.

Bioelectricity. 2024-3-1

[10]
Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer.

Curr Pharm Des. 2017

引用本文的文献

[1]
TRP channels and cancer modulation: a voyage beyond metabolic reprogramming, oxidative stress and the advent of nanotechnologies in targeted therapy.

J Exp Clin Cancer Res. 2025-8-14

[2]
Recent advances in the halogenated spirooxindoles as novel anticancer scaffolds: chemistry and bioactivity approach.

RSC Adv. 2025-7-1

[3]
Deciphering the Regulatory Potential of Antioxidant and Electron-Shuttling Bioactive Compounds in Oolong Tea.

Biology (Basel). 2025-4-28

[4]
Meeting Review: "National Cancer Institute Conference on Cancer Bioelectricity" September 12, 2024.

Bioelectricity. 2025-3-18

[5]
Transient Receptor Potential Channels in Prostate Cancer: Associations with ERG Fusions and Survival.

Int J Mol Sci. 2025-4-11

[6]
Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer.

Redox Biol. 2025-2

[7]
Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review.

Front Netw Physiol. 2024-12-10

[8]
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.

Adv Healthc Mater. 2025-2

[9]
Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies.

J Membr Biol. 2024-12

[10]
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.

Materials (Basel). 2024-2-27

本文引用的文献

[1]
Wireless electrical-molecular quantum signalling for cancer cell apoptosis.

Nat Nanotechnol. 2024-1

[2]
Lighting up action potentials with fast and bright voltage sensors.

Nat Methods. 2023-7

[3]
A positively tuned voltage indicator for extended electrical recordings in the brain.

Nat Methods. 2023-7

[4]
Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies.

Biosensors (Basel). 2023-6-13

[5]
Passive Recording of Bioelectrical Signals from Non-Excitable Cells by Fluorescent Mirroring.

Nano Lett. 2023-4-26

[6]
Detection of Membrane Potential-Dependent Rhodopsin Fluorescence Using Low-Intensity Light Emitting Diode for Long-Term Imaging.

ACS Omega. 2023-1-25

[7]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[8]
Photochemically-driven highly efficient intracellular delivery and light/hypoxia programmable triggered cancer photo-chemotherapy.

J Nanobiotechnology. 2023-1-12

[9]
Video-based pooled screening yields improved far-red genetically encoded voltage indicators.

Nat Methods. 2023-7

[10]
"Trojan horse" nanoparticle-delivered cancer cell membrane vaccines to enhance cancer immunotherapy by overcoming immune-escape.

Biomater Sci. 2023-3-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索