Suppr超能文献

用于神经系统分子磁共振成像的生物工程探针。

Bioengineered probes for molecular magnetic resonance imaging in the nervous system.

机构信息

Departments of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA.

出版信息

ACS Chem Neurosci. 2012 Aug 15;3(8):593-602. doi: 10.1021/cn300059r. Epub 2012 Jul 11.

Abstract

The development of molecular imaging probes has changed the nature of neurobiological research. Some of the most notable successes have involved the use of biological engineering techniques for the creation of fluorescent protein derivatives for optical imaging, but recent work has also led to a number of bioengineered probes for magnetic resonance imaging (MRI), the preeminent technique for noninvasive investigation of brain structure and function. Molecular MRI agents are beginning to be applied for experiments in the nervous system, where they have the potential to bridge from molecular to systems or organismic levels of analysis. Compared with canonical synthetic small molecule agents, biomolecular or semibiosynthetic MRI contrast agents offer special advantages due to their amenability to molecular engineering approaches, their properties in some cases as catalysts, and their specificity in targeting and ligand binding. Here, we discuss an expanding list of instances where biological engineering techniques have aided in the design of MRI contrast agents and reporter systems, examining both advantages and limitations of these types of probes for studies in the central nervous system.

摘要

分子成像探针的发展改变了神经生物学研究的本质。一些最显著的成功涉及使用生物工程技术来创建用于光学成像的荧光蛋白衍生物,但最近的工作也导致了许多用于磁共振成像(MRI)的生物工程探针,MRI 是用于无创性研究大脑结构和功能的主要技术。分子 MRI 造影剂开始应用于神经系统的实验中,它们有可能从分子水平过渡到系统或机体水平的分析。与典型的合成小分子造影剂相比,由于其易于采用分子工程方法、在某些情况下作为催化剂的特性以及在靶向和配体结合方面的特异性,生物分子或半合成 MRI 造影剂具有特殊的优势。在这里,我们讨论了一系列扩展的实例,其中生物工程技术有助于 MRI 造影剂和报告系统的设计,同时检查了这些类型的探针在中枢神经系统研究中的优势和局限性。

相似文献

4
Neuroimaging with ultra-high field MRI: Present and future.超高场磁共振成像的神经影像学:现状与未来。
Neuroimage. 2018 Mar;168:1-6. doi: 10.1016/j.neuroimage.2018.01.072. Epub 2018 Feb 1.
5
Molecular fMRI.分子功能磁共振成像
J Neurosci. 2016 Apr 13;36(15):4139-48. doi: 10.1523/JNEUROSCI.4050-15.2016.
7
F Magnetic Resonance Activity-Based Sensing Using Paramagnetic Metals.基于顺磁金属的 F 磁共振活性检测。
Acc Chem Res. 2020 Jan 21;53(1):2-10. doi: 10.1021/acs.accounts.9b00352. Epub 2019 Dec 6.
9
Molecular imaging with targeted contrast agents.使用靶向造影剂的分子成像。
Top Magn Reson Imaging. 2009 Aug;20(4):247-59. doi: 10.1097/RMR.0b013e3181ea28b1.

引用本文的文献

3
Probing the brain with molecular fMRI.分子 fMRI 探测大脑。
Curr Opin Neurobiol. 2018 Jun;50:201-210. doi: 10.1016/j.conb.2018.03.009. Epub 2018 Apr 9.
7
Physical principles for scalable neural recording.可扩展神经记录的物理原理。
Front Comput Neurosci. 2013 Oct 21;7:137. doi: 10.3389/fncom.2013.00137. eCollection 2013.
8
Metalloprotein-based MRI probes.基于金属蛋白酶的 MRI 探针。
FEBS Lett. 2013 Apr 17;587(8):1021-9. doi: 10.1016/j.febslet.2013.01.044. Epub 2013 Jan 31.

本文引用的文献

8
Optimizing non-natural protein function with directed evolution.通过定向进化优化非天然蛋白质功能。
Curr Opin Chem Biol. 2011 Apr;15(2):201-10. doi: 10.1016/j.cbpa.2010.11.020. Epub 2010 Dec 23.
10
Challenges for Molecular Neuroimaging with MRI.MRI分子神经成像面临的挑战。
Int J Imaging Syst Technol. 2010 Mar;20(1):71-79. doi: 10.1002/ima.20221.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验