Suppr超能文献

分子 fMRI 探测大脑。

Probing the brain with molecular fMRI.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.

Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.

出版信息

Curr Opin Neurobiol. 2018 Jun;50:201-210. doi: 10.1016/j.conb.2018.03.009. Epub 2018 Apr 9.

Abstract

One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people.

摘要

现代神经科学面临的最大挑战之一,是将我们对分子和细胞尺度生理学的日益增长的认识,整合到行为和认知的整体器官尺度的大脑功能模型中。分子水平功能磁共振成像(molecular fMRI)是一种新技术,可以通过对活体大脑中大型、光学不可及区域的特定微观现象进行映射,帮助弥合这些尺度之间的差距。在这篇综述中,我们解释了如何使用 MRI 可检测的成像探针来使非侵入性成像对神经处理的机械学上有意义的成分敏感。我们讨论了如何结合创新的探针设计、先进的成像方法以及大脑传递策略,使分子 fMRI 成为一种越来越成功的方法,用于对各种神经现象进行时空分辨率研究,也许最终可以应用于人。

相似文献

1
Probing the brain with molecular fMRI.分子 fMRI 探测大脑。
Curr Opin Neurobiol. 2018 Jun;50:201-210. doi: 10.1016/j.conb.2018.03.009. Epub 2018 Apr 9.
2
Molecular fMRI.分子功能磁共振成像
J Neurosci. 2016 Apr 13;36(15):4139-48. doi: 10.1523/JNEUROSCI.4050-15.2016.
3
Linking cortical circuit models to human cognition with laminar fMRI.用皮层分层 fMRI 将皮质电路模型与人类认知联系起来。
Neurosci Biobehav Rev. 2021 Sep;128:467-478. doi: 10.1016/j.neubiorev.2021.07.005. Epub 2021 Jul 8.
9
Advances in fMRI Real-Time Neurofeedback.功能磁共振成像实时神经反馈的进展
Trends Cogn Sci. 2017 Dec;21(12):997-1010. doi: 10.1016/j.tics.2017.09.010. Epub 2017 Oct 12.

引用本文的文献

5
Probing nitric oxide signaling using molecular MRI.利用分子 MRI 探测一氧化氮信号。
Free Radic Biol Med. 2022 Oct;191:241-248. doi: 10.1016/j.freeradbiomed.2022.08.042. Epub 2022 Sep 6.
8
Molecular fMRI of neurochemical signaling.分子功能磁共振成像的神经化学信号。
J Neurosci Methods. 2021 Dec 1;364:109372. doi: 10.1016/j.jneumeth.2021.109372. Epub 2021 Sep 29.

本文引用的文献

1
Calcium-dependent molecular fMRI using a magnetic nanosensor.基于磁性纳米传感器的钙依赖型分子 fMRI 技术
Nat Nanotechnol. 2018 Jun;13(6):473-477. doi: 10.1038/s41565-018-0092-4. Epub 2018 Apr 30.
2
Biomolecular MRI reporters: Evolution of new mechanisms.生物分子 MRI 报告器:新机制的演进。
Prog Nucl Magn Reson Spectrosc. 2017 Nov;102-103:32-42. doi: 10.1016/j.pnmrs.2017.05.002. Epub 2017 Jun 3.
6
Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.极其微小的氧化铁纳米颗粒作为阳性磁共振成像造影剂。
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2325-2330. doi: 10.1073/pnas.1620145114. Epub 2017 Feb 13.
10
Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation.聚焦超声破坏血脑屏障会引发无菌性炎症。
Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75-E84. doi: 10.1073/pnas.1614777114. Epub 2016 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验