Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.
Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.
Curr Opin Neurobiol. 2018 Jun;50:201-210. doi: 10.1016/j.conb.2018.03.009. Epub 2018 Apr 9.
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people.
现代神经科学面临的最大挑战之一,是将我们对分子和细胞尺度生理学的日益增长的认识,整合到行为和认知的整体器官尺度的大脑功能模型中。分子水平功能磁共振成像(molecular fMRI)是一种新技术,可以通过对活体大脑中大型、光学不可及区域的特定微观现象进行映射,帮助弥合这些尺度之间的差距。在这篇综述中,我们解释了如何使用 MRI 可检测的成像探针来使非侵入性成像对神经处理的机械学上有意义的成分敏感。我们讨论了如何结合创新的探针设计、先进的成像方法以及大脑传递策略,使分子 fMRI 成为一种越来越成功的方法,用于对各种神经现象进行时空分辨率研究,也许最终可以应用于人。