Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
Biochemistry. 2012 Sep 4;51(35):6942-9. doi: 10.1021/bi300817d. Epub 2012 Aug 23.
Respiration, photosynthesis, and metabolism require the transfer of electrons through and between proteins over relatively long distances. It is critical that this electron transfer (ET) occur with specificity to avoid cellular damage, and at a rate that is sufficient to support the biological activity. A multistep hole hopping mechanism could, in principle, enhance the efficiency of long-range ET through proteins as it does in organic semiconductors. To explore this possibility, two different ET reactions that occur over the same distance within the protein complex of the diheme enzyme MauG and different forms of methylamine dehydrogenase (MADH) were subjected to kinetic and thermodynamic analysis. An ET mechanism of single-step direct electron tunneling from diferrous MauG to the quinone form of MADH is consistent with the data. In contrast, the biosynthetic ET from preMADH, which contains incompletely synthesized tryptophan tryptophylquinone, to the bis-Fe(IV) form of MauG is best described by a two-step hole hopping mechanism. Experimentally determined ET distances matched the distances determined from the crystal structure that would be expected for single-step tunneling and multistep hopping. Experimentally determined relative values of electronic coupling (H(AB)) for the two reactions correlated well with the relative H(AB) values predicted from computational analysis of the structure. The rate of the hopping-mediated ET reaction is also 10-fold greater than that of the single-step tunneling reaction despite a smaller overall driving force for the hopping-mediated ET reaction. These data provide insight into how the intervening protein matrix and redox potentials of the electron donor and acceptor determine whether the ET reaction proceeds via single-step tunneling or multistep hopping.
呼吸、光合作用和代谢需要通过蛋白质和蛋白质之间传递电子,而且电子传递的距离相对较长。电子传递(ET)必须具有特异性,以避免细胞损伤,并且传递速度必须足以支持生物活性。多步空穴跳跃机制原则上可以通过蛋白质增强长程 ET 的效率,就像在有机半导体中那样。为了探索这种可能性,对二血红素酶 MauG 蛋白复合物内发生的两个不同的 ET 反应和不同形式的甲胺脱氢酶(MADH)进行了动力学和热力学分析。从亚铁 MauG 到 MADH 的醌形式的单步直接电子隧穿的 ET 机制与数据一致。相比之下,从包含不完全合成色氨酸色基喹啉的前 MADH 到 MauG 的双 Fe(IV)形式的生物合成 ET 最好通过两步空穴跳跃机制来描述。实验测定的 ET 距离与晶体结构确定的距离相匹配,这与结构的计算分析预测的单步隧穿和多步跳跃的距离相匹配。实验测定的两个反应的电子耦合(H(AB))相对值与结构计算分析预测的 H(AB)相对值很好地相关。尽管跳跃介导的 ET 反应的整体驱动力较小,但跳跃介导的 ET 反应的速率比单步隧穿反应快 10 倍。这些数据深入了解了中间蛋白质基质和电子供体和受体的氧化还原电势如何决定 ET 反应是通过单步隧穿还是多步跳跃进行。