Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.
Annu Rev Biochem. 2013;82:531-50. doi: 10.1146/annurev-biochem-051110-133601.
Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH required for this catalytic activity. TTQ is biosynthesized through the posttranslational modification of two tryptophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form responsible for the catalytic activity is an unprecedented bis-Fe(IV) species. The amino acids of MADH that are modified are ≈ 40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review addresses these highly unusual aspects of the long-range catalytic reaction mediated by MauG.
甲胺脱氢酶(MADH)催化甲胺的氧化脱氨生成甲醛和氨。色氨酸色基醌(TTQ)是 MADH 催化活性所必需的蛋白衍生辅因子。TTQ 通过 MADH 内两个色氨酸残基的翻译后修饰合成,在此过程中,两个色氨酸侧链的吲哚环交联,两个氧原子插入一个吲哚环中。MauG 是一种 c 型二血红素酶,催化 TTQ 形成的最后三个反应。总的来说,这是一个六电子氧化过程,需要 MauG 依赖性的两个电子氧化事件的三个循环,使用 H2O2 或 O2。负责催化活性的 MauG 氧化还原形式是一种前所未有的双 Fe(IV)物种。被修饰的 MADH 氨基酸与 MauG 结合氧的位置约为 40 Å,反应通过空穴跳跃电子转移机制进行。本综述讨论了 MauG 介导的长程催化反应的这些非常不寻常的方面。