Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
Biochemistry. 2010 Jul 13;49(27):5810-6. doi: 10.1021/bi1004969.
The diheme enzyme MauG catalyzes the post-translational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. This six-electron oxidation of preMADH requires long-range electron transfer (ET) as the structure of the MauG-preMADH complex reveals that the shortest distance between the modified residues of preMADH and the nearest heme of MauG is 14.0 A [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. The kinetics of two ET reactions between MADH and MauG have been analyzed. Interprotein ET from quinol MADH to the high-valent bis-Fe(IV) form of MauG exhibits a K(d) of 11.2 microM and a rate constant of 20 s(-1). ET from diferrous MauG to oxidized TTQ of MADH exhibits a K(d) of 10.1 microM and a rate constant of 0.07 s(-1). These similar K(d) values are much greater than that for the MauG-preMADH complex, indicating that the extent of TTQ maturity rather than its redox state influences complex formation. The difference in rate constants is consistent with a larger driving force for the faster reaction. Analysis of the structure of the MauG-preMADH complex in the context of ET theory and these results suggests that direct electron tunneling between the residues that form TTQ and the five-coordinate oxygen-binding heme is not possible, and that ET requires electron hopping via the six-coordinate heme.
二血红素酶 MauG 催化亚甲基胺脱氢酶(preMADH)前体蛋白的翻译后修饰,以完成其蛋白衍生色氨酸色原醌(TTQ)辅因子的生物合成。preMADH 的这种六电子氧化需要长程电子转移(ET),因为 MauG-preMADH 复合物的结构表明,preMADH 中被修饰的残基与 MauG 中最近的血红素之间的最短距离为 14.0 A [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]。已经分析了 MADH 和 MauG 之间的两个 ET 反应的动力学。醌型 MADH 与高价双 Fe(IV)形式 MauG 之间的蛋白质内 ET 的 K(d)为 11.2 microM,速率常数为 20 s(-1)。从 diferrous MauG 到 MADH 的氧化 TTQ 的 ET 的 K(d)为 10.1 microM,速率常数为 0.07 s(-1)。这些相似的 K(d)值远大于 MauG-preMADH 复合物的值,表明 TTQ 的成熟程度而不是其氧化还原状态影响复合物的形成。速率常数的差异与更快反应的驱动力更大一致。从 ET 理论和这些结果的角度分析 MauG-preMADH 复合物的结构表明,形成 TTQ 的残基与五配位氧结合血红素之间不可能直接电子隧穿,并且 ET 需要通过六配位血红素进行电子跳跃。