Suppr超能文献

MauG 血红素与胺脱氢酶中不同形式色氨酸色氨酸醌之间的远程电子转移反应。

Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.

机构信息

Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.

出版信息

Biochemistry. 2010 Jul 13;49(27):5810-6. doi: 10.1021/bi1004969.

Abstract

The diheme enzyme MauG catalyzes the post-translational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. This six-electron oxidation of preMADH requires long-range electron transfer (ET) as the structure of the MauG-preMADH complex reveals that the shortest distance between the modified residues of preMADH and the nearest heme of MauG is 14.0 A [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. The kinetics of two ET reactions between MADH and MauG have been analyzed. Interprotein ET from quinol MADH to the high-valent bis-Fe(IV) form of MauG exhibits a K(d) of 11.2 microM and a rate constant of 20 s(-1). ET from diferrous MauG to oxidized TTQ of MADH exhibits a K(d) of 10.1 microM and a rate constant of 0.07 s(-1). These similar K(d) values are much greater than that for the MauG-preMADH complex, indicating that the extent of TTQ maturity rather than its redox state influences complex formation. The difference in rate constants is consistent with a larger driving force for the faster reaction. Analysis of the structure of the MauG-preMADH complex in the context of ET theory and these results suggests that direct electron tunneling between the residues that form TTQ and the five-coordinate oxygen-binding heme is not possible, and that ET requires electron hopping via the six-coordinate heme.

摘要

二血红素酶 MauG 催化亚甲基胺脱氢酶(preMADH)前体蛋白的翻译后修饰,以完成其蛋白衍生色氨酸色原醌(TTQ)辅因子的生物合成。preMADH 的这种六电子氧化需要长程电子转移(ET),因为 MauG-preMADH 复合物的结构表明,preMADH 中被修饰的残基与 MauG 中最近的血红素之间的最短距离为 14.0 A [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]。已经分析了 MADH 和 MauG 之间的两个 ET 反应的动力学。醌型 MADH 与高价双 Fe(IV)形式 MauG 之间的蛋白质内 ET 的 K(d)为 11.2 microM,速率常数为 20 s(-1)。从 diferrous MauG 到 MADH 的氧化 TTQ 的 ET 的 K(d)为 10.1 microM,速率常数为 0.07 s(-1)。这些相似的 K(d)值远大于 MauG-preMADH 复合物的值,表明 TTQ 的成熟程度而不是其氧化还原状态影响复合物的形成。速率常数的差异与更快反应的驱动力更大一致。从 ET 理论和这些结果的角度分析 MauG-preMADH 复合物的结构表明,形成 TTQ 的残基与五配位氧结合血红素之间不可能直接电子隧穿,并且 ET 需要通过六配位血红素进行电子跳跃。

相似文献

引用本文的文献

2
A Stable Ferryl Porphyrin at the Active Site of Y463M BthA.Y463M BthA 活性位点处稳定的亚铁卟啉。
J Am Chem Soc. 2020 Jul 15;142(28):11978-11982. doi: 10.1021/jacs.0c04023. Epub 2020 Jul 1.
10
Structures of MauG in complex with quinol and quinone MADH.与喹诺和醌型苹果酸脱氢酶复合的MauG的结构。
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Jul;69(Pt 7):738-43. doi: 10.1107/S1744309113016539. Epub 2013 Jun 27.

本文引用的文献

3
Electron transfer in peptides and proteins.肽和蛋白质中的电子转移
Curr Opin Chem Biol. 2008 Dec;12(6):755-9. doi: 10.1016/j.cbpa.2008.08.026. Epub 2008 Sep 17.
9
Structure and mechanism in the bacterial dihaem cytochrome c peroxidases.细菌双血红素细胞色素c过氧化物酶的结构与机制
J Inorg Biochem. 2006 Apr;100(4):551-67. doi: 10.1016/j.jinorgbio.2005.12.008. Epub 2006 Jan 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验