Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
Biochemistry. 2009 Mar 24;48(11):2442-7. doi: 10.1021/bi802166c.
The diheme enzyme MauG catalyzes the biosynthesis of tryptophan tryptophylquinone (TTQ), the protein-derived cofactor of methylamine dehydrogenase (MADH). This process requires the six-electron oxidation of a 119 kDa MADH precursor protein with incompletely synthesized TTQ (PreMADH). The kinetic mechanism of the initial two-electron oxidation of this natural substrate by MauG was characterized. The relative reactivity of free MauG toward H(2)O(2) and the O(2) analogue CO was essentially the same as that of MauG in the preformed enzyme-substrate complex. The addition of H(2)O(2) to diferric MauG generated a diheme bis-Fe(IV) species [i.e., Fe(IV)=O/Fe(IV)] which formed at a rate of >300 s(-1) and spontaneously returned to the diferric state at a rate of 2 x 10(-4) s(-1) in the absence of substrate. The reaction of bis-Fe(IV) MauG with PreMADH exhibited saturation behavior with a limiting first-order rate constant of 0.8 s(-1) and a K(d) of < or = 1.5 microM for the MauG-PreMADH complex. The results were the same whether bis-Fe(IV) MauG was mixed with PreMADH or H(2)O(2) was added to the preformed enzyme-substrate complex to generate bis-Fe(IV) MauG followed by reaction with PreMADH. Stopped-flow kinetic studies of the reaction of diferrous MauG with CO yielded a faster major transition with a bimolecular rate constant of 5.4 x 10(5) M(-1) s(-1), and slower transition with a rate of 16 s(-1) which was independent of CO concentration. The same rates were obtained for binding of CO to diferrous MauG in complex with PreMADH. This demonstration of a random kinetic mechanism for the first two-electron oxidation reaction of MauG-dependent TTQ biosynthesis, in which the order of addition of oxidizing equivalent and substrate does not matter, is atypical of those of heme-dependent oxygenases that are not generally reactive toward oxygen in the absence of substrate. This kinetic mechanism is also distinct from that of the homologous diheme cytochrome c peroxidases that require a mixed valence state for activity.
双血红素酶 MauG 催化色氨酸色基醌 (TTQ) 的生物合成,TTQ 是甲胺脱氢酶 (MADH) 的蛋白质衍生辅因子。该过程需要用不完全合成的 TTQ (PreMADH) 将 119 kDa 的 MADH 前体蛋白氧化六电子。MauG 对天然底物的初始两电子氧化的动力学机制进行了特征描述。游离 MauG 对 H(2)O(2)和 O(2)类似物 CO 的相对反应性与预形成的酶-底物复合物中的 MauG 基本相同。向双铁 MauG 中添加 H(2)O(2)生成双血红素双 Fe(IV)物种[即 Fe(IV)=O/Fe(IV)],其形成速率>300 s(-1),在没有底物的情况下以 2 x 10(-4) s(-1)的速率自发回到双铁状态。双 Fe(IV) MauG 与 PreMADH 的反应表现出饱和行为,其限速常数为 0.8 s(-1),MauG-PreMADH 复合物的 K(d) <或= 1.5 microM。无论双 Fe(IV) MauG 是与 PreMADH 混合还是将 H(2)O(2)添加到预形成的酶-底物复合物中以生成双 Fe(IV) MauG 然后与 PreMADH 反应,结果都是相同的。差亚铁 MauG 与 CO 的反应的停流动力学研究得到了一个更快的主要转变,双分子速率常数为 5.4 x 10(5) M(-1) s(-1),以及一个与 CO 浓度无关的较慢转变,速率为 16 s(-1)。在与 PreMADH 形成复合物时,CO 与差亚铁 MauG 的结合也得到了相同的速率。这种 MauG 依赖性 TTQ 生物合成的第一个两电子氧化反应的随机动力学机制的证明,其中氧化当量和底物的添加顺序并不重要,这与那些通常对底物无反应的血红素依赖性加氧酶不同。这种动力学机制也与需要混合价态才能发挥活性的同源双血红素细胞色素 c 过氧化物酶不同。