Suppr超能文献

网络中的叙述:挖掘细胞信号网络的交互方法

Narratives in the network: interactive methods for mining cell signaling networks.

作者信息

Hossain M Shahriar, Akbar Monika, Polys Nicholas F

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24060, USA.

出版信息

J Comput Biol. 2012 Sep;19(9):1043-59. doi: 10.1089/cmb.2011.0244. Epub 2012 Aug 16.

Abstract

In this article, we describe our work on graph mining as applied to the cellular signaling pathways in the Signal Transduction Knowledge Environment (STKE). We present new algorithms and a graphical tool that can help biologists discover relationships between pathways by looking at structural overlaps within the database. We address the problem of determining pathway relationships by using two data mining approaches: clustering and storytelling. In the first approach, our tool brings similar pathways to the same cluster, and in the second, our tool determines intermediate overlapping pathways that can lead biologists to new hypotheses and experiments regarding relationships between the pathways. We formulate the problem of discovering pathway relationships as a subgraph discovery problem and propose a new technique called Subgraph-Extension Generation (SEG), which outperforms the traditional Frequent Subgraph Discovery (FSG) approach by magnitudes. Our tool provides an interface to compare these two approaches with a variety of similarity measures and clustering techniques as well as in terms of computational performance measures such as runtime and memory consumption.

摘要

在本文中,我们描述了我们在图挖掘方面的工作,该工作应用于信号转导知识环境(STKE)中的细胞信号通路。我们提出了新的算法和一种图形工具,通过查看数据库中的结构重叠,可帮助生物学家发现通路之间的关系。我们通过两种数据挖掘方法来解决确定通路关系的问题:聚类和叙事。在第一种方法中,我们的工具将相似的通路归为同一聚类;在第二种方法中,我们的工具确定中间重叠通路,这可引导生物学家提出有关通路之间关系的新假设和实验。我们将发现通路关系的问题表述为子图发现问题,并提出一种名为子图扩展生成(SEG)的新技术,该技术在性能上比传统的频繁子图发现(FSG)方法高出许多倍。我们的工具提供了一个接口,可使用各种相似性度量和聚类技术以及诸如运行时和内存消耗等计算性能度量来比较这两种方法。

相似文献

2
Discovering metric temporal constraint networks on temporal databases.发现时态数据库上的度量时态约束网络。
Artif Intell Med. 2013 Jul;58(3):139-54. doi: 10.1016/j.artmed.2013.03.006. Epub 2013 May 6.
5
Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.耦合图、高效算法与B细胞表位预测
IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):7-16. doi: 10.1109/TCBB.2013.136.
9

引用本文的文献

1
Immersive Analytics: Theory and Research Agenda.沉浸式分析:理论与研究议程
Front Robot AI. 2019 Sep 10;6:82. doi: 10.3389/frobt.2019.00082. eCollection 2019.

本文引用的文献

1
Connecting the dots between PubMed abstracts.连接 PubMed 摘要之间的点。
PLoS One. 2012;7(1):e29509. doi: 10.1371/journal.pone.0029509. Epub 2012 Jan 3.
2
ASK-GraphView: A large scale graph visualization system.ASK-图形视图:一个大规模图形可视化系统。
IEEE Trans Vis Comput Graph. 2006 Sep-Oct;12(5):669-76. doi: 10.1109/TVCG.2006.120.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验