State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.
J Chem Phys. 2012 Aug 14;137(6):065102. doi: 10.1063/1.4734305.
We established the potential and flux landscape theory for evolution. We found explicitly the conventional Wright's gradient adaptive landscape based on the mean fitness is inadequate to describe the general evolutionary dynamics. We show the intrinsic potential as being Lyapunov function(monotonically decreasing in time) does exist and can define the adaptive landscape for general evolution dynamics for studying global stability. The driving force determining the dynamics can be decomposed into gradient of potential landscape and curl probability flux. Non-zero flux causes detailed balance breaking and measures how far the evolution from equilibrium state. The gradient of intrinsic potential and curl flux are perpendicular to each other in zero fluctuation limit resembling electric and magnetic forces on electrons. We quantified intrinsic energy, entropy and free energy of evolution and constructed non-equilibrium thermodynamics. The intrinsic non-equilibrium free energy is a Lyapunov function. Both intrinsic potential and free energy can be used to quantify the global stability and robustness of evolution. We investigated an example of three allele evolutionary dynamics with frequency dependent selection (detailed balance broken). We uncovered the underlying single, triple, and limit cycle attractor landscapes. We found quantitative criterions for stability through landscape topography. We also quantified evolution pathways and found paths do not follow potential gradient and are irreversible due to non-zero flux. We generalized the original Fisher's fundamental theorem to the general (i.e., frequency dependent selection) regime of evolution by linking the adaptive rate with not only genetic variance related to the potential but also the flux. We show there is an optimum potential where curl flux resulting from biotic interactions of individuals within a species or between species can sustain an endless evolution even if the physical environment is unchanged. We offer a theoretical basis for explaining the corresponding Red Queen hypothesis proposed by Van Valen. Our work provides a theoretical foundation for evolutionary dynamics.
我们建立了进化的潜力和通量景观理论。我们明确地发现,基于平均适应度的传统 Wright 梯度适应景观不足以描述一般的进化动态。我们表明,内在潜力作为 Lyapunov 函数(随时间单调减少)确实存在,并可以为一般进化动力学定义适应景观,以研究全局稳定性。决定动力学的驱动力可以分解为势景观的梯度和卷曲概率通量。非零通量导致详细平衡破坏,并衡量进化与平衡态的偏离程度。在零波动极限下,内在势梯度和卷曲通量相互垂直,类似于电子上的电场和磁场。我们量化了进化的内在能量、熵和自由能,并构建了非平衡热力学。内在非平衡自由能是一个 Lyapunov 函数。内在势和自由能都可以用来量化进化的全局稳定性和鲁棒性。我们研究了一个具有频率依赖选择(打破详细平衡)的三等位基因进化动力学的例子。我们揭示了潜在的单、三、极限环吸引景观。我们通过景观地形发现了稳定性的定量判据。我们还量化了进化途径,发现由于非零通量,路径不遵循势梯度且不可逆转。我们通过将适应率与不仅与势相关的遗传方差而且与通量相关联,将原始 Fisher 基本定理推广到进化的一般(即频率依赖选择)情况。我们表明存在一个最佳潜力,在这个潜力下,个体之间或物种之间的生物相互作用产生的卷曲通量可以维持无尽的进化,即使物理环境保持不变。我们为解释 Van Valen 提出的相应“红皇后假说”提供了理论基础。我们的工作为进化动力学提供了理论基础。