Suppr超能文献

随机混沌与马尔可夫毯

Stochastic Chaos and Markov Blankets.

作者信息

Friston Karl, Heins Conor, Ueltzhöffer Kai, Da Costa Lancelot, Parr Thomas

机构信息

Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK.

Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany.

出版信息

Entropy (Basel). 2021 Sep 17;23(9):1220. doi: 10.3390/e23091220.

Abstract

In this treatment of random dynamical systems, we consider the existence-and identification-of conditional independencies at nonequilibrium steady-state. These independencies underwrite a particular partition of states, in which internal states are statistically secluded from external states by blanket states. The existence of such partitions has interesting implications for the information geometry of internal states. In brief, this geometry can be read as a physics of sentience, where internal states look as if they are inferring external states. However, the existence of such partitions-and the functional form of the underlying densities-have yet to be established. Here, using the Lorenz system as the basis of stochastic chaos, we leverage the Helmholtz decomposition-and polynomial expansions-to parameterise the steady-state density in terms of surprisal or self-information. We then show how Markov blankets can be identified-using the accompanying Hessian-to characterise the coupling between internal and external states in terms of a generalised synchrony or synchronisation of chaos. We conclude by suggesting that this kind of synchronisation may provide a mathematical basis for an elemental form of (autonomous or active) sentience in biology.

摘要

在这种对随机动力系统的处理中,我们考虑非平衡稳态下条件独立性的存在与识别。这些独立性支持了一种特定的状态划分,其中内部状态通过覆盖状态与外部状态在统计上隔离开来。这种划分的存在对内部状态的信息几何有着有趣的影响。简而言之,这种几何可以被理解为一种感知物理学,其中内部状态看起来就好像在推断外部状态。然而,这种划分的存在以及底层密度的函数形式尚未得到确定。在这里,我们以洛伦兹系统作为随机混沌的基础,利用亥姆霍兹分解和多项式展开,根据惊奇度或自信息对稳态密度进行参数化。然后我们展示了如何使用伴随的海森矩阵来识别马尔可夫覆盖,从而根据广义同步或混沌同步来表征内部和外部状态之间的耦合。我们最后提出,这种同步可能为生物学中一种基本形式的(自主或主动)感知提供数学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc0/8465859/cf649691ce25/entropy-23-01220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验