Suppr超能文献

逐步动力学平衡模型的定量聚合酶链反应。

Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

机构信息

Department of Biology, University of Louisville, Louisville, KY 40292, USA.

出版信息

BMC Bioinformatics. 2012 Aug 16;13:203. doi: 10.1186/1471-2105-13-203.

Abstract

BACKGROUND

Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented.

RESULTS

Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available.

CONCLUSIONS

It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.

摘要

背景

目前的文献中存在许多用于解释实时荧光定量 PCR(qPCR)数据的模型。最常用的模型假设 qPCR 的扩增是指数型的,并采用一个恒定的增长率来拟合曲线的一个选定部分。动力学理论可用于模拟退火阶段,且不假设扩增效率恒定。描述退火阶段动力学理论的机理模型为 qPCR 数据的准确解释提供了最大的潜力。即便如此,它们尚未得到彻底的研究,并且很少用于 qPCR 数据的解释。本文提出了 qPCR 动力学建模的新结果。

结果

本文提出了两种基于 qPCR 退火阶段平衡解的扩增效率模型。模型 1 假设互补靶链的退火和靶标与引物的退火均为可逆反应,并达到动态平衡。模型 2 假设所有退火反应均不可逆且平衡为静态。两个模型都包含了退火阶段引物浓度的影响。给出了退火步骤结束时所有单链和双链分子平衡值的解析公式。然后,这些平衡值用于逐步法来描述整个 qPCR 过程。除了可能具有不同的初始靶浓度外,动力学模型的速率常数对于相同的解是相同的。因此,对于具有相同速率常数值且每个曲线都具有独特初始靶浓度的所有曲线,通过同时进行非线性曲线拟合来分析来自这些解的 qPCR 曲线。该模型拟合了两个真实初始靶浓度已知的数据集。与文献中存在的其他动力学模型相比,这两个模型都能更好地拟合观察到的 qPCR 数据。它们还能更好地估计初始靶浓度。当对初始靶浓度差异很大的 qPCR 曲线进行参数估计时,模型 1 比模型 2 更稳健,能更好地估计初始靶浓度。当不存在标准曲线时,这两个模型都可用于估计目标序列的初始绝对浓度。

结论

本文认为,与目前用于 qPCR 数据分析的其他方法相比,动力学方法在建模和解释实时荧光定量 PCR 数据方面具有更精确估计真实初始靶浓度的潜力。本文提出的两个模型提供了 qPCR 过程的统一模型,因为它们解释了各种初始靶浓度下 qPCR 曲线的形状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验