Suppr超能文献

语料库全文期刊文章是一种强大的评估工具,可用于揭示生物医学自然语言处理工具性能的差异。

A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools.

机构信息

Computational Bioscience Program, U, Colorado School of Medicine, 12801 E 17th Ave, Aurora, MS 8303, CO 80045, USA.

出版信息

BMC Bioinformatics. 2012 Aug 17;13:207. doi: 10.1186/1471-2105-13-207.

Abstract

BACKGROUND

We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus.

RESULTS

Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data.

CONCLUSIONS

The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications.

摘要

背景

我们介绍了一个包含 97 篇全文生物医学文献的语料库的语言注释,这个语料库被称为科罗拉多丰富标注全文(CRAFT)语料库。我们进一步评估了现有的工具在这个语料库上进行句子分割、标记化、句法分析和命名实体识别的性能。

结果

许多生物医学自然语言处理系统在使用公开可用的模型或规则集进行测试时,其之前发表的结果与在 CRAFT 语料库上的表现之间存在很大差异。可训练的系统在基于此数据构建高性能模型的能力方面差异很大。

结论

一些系统能够基于这个语料库训练出高性能的模型,这一发现除了表明标注者之间具有高度的一致性之外,还进一步证明了 CRAFT 语料库的质量很高。各种系统整体表现不佳表明,需要做大量工作才能使自然语言处理系统在输入是全文期刊文章时能够很好地工作。CRAFT 语料库为生物医学自然语言处理社区提供了有价值的资源,可用于评估和训练用于生物医学全文出版物的新模型。

相似文献

3
Concept annotation in the CRAFT corpus.概念标注在 CRAFT 语料库中。
BMC Bioinformatics. 2012 Jul 9;13:161. doi: 10.1186/1471-2105-13-161.
6
The biomedical discourse relation bank.生物医学话语关系库。
BMC Bioinformatics. 2011 May 23;12:188. doi: 10.1186/1471-2105-12-188.

引用本文的文献

1
Parallel sequence tagging for concept recognition.并行序列标注用于概念识别。
BMC Bioinformatics. 2022 Mar 24;22(Suppl 1):623. doi: 10.1186/s12859-021-04511-y.
3
Examining linguistic shifts between preprints and publications.考察预印本和出版物之间的语言变化。
PLoS Biol. 2022 Feb 1;20(2):e3001470. doi: 10.1371/journal.pbio.3001470. eCollection 2022 Feb.
6
Dependency parsing of biomedical text with BERT.基于 BERT 的生物医学文本依存句法分析。
BMC Bioinformatics. 2020 Dec 29;21(Suppl 23):580. doi: 10.1186/s12859-020-03905-8.

本文引用的文献

1
Concept annotation in the CRAFT corpus.概念标注在 CRAFT 语料库中。
BMC Bioinformatics. 2012 Jul 9;13:161. doi: 10.1186/1471-2105-13-161.
3
Entrez Gene: gene-centered information at NCBI.Entrez基因:美国国立医学图书馆国家生物技术信息中心的基因中心信息。
Nucleic Acids Res. 2011 Jan;39(Database issue):D52-7. doi: 10.1093/nar/gkq1237. Epub 2010 Nov 28.
4
Database resources of the National Center for Biotechnology Information.美国国立生物技术信息中心的数据库资源。
Nucleic Acids Res. 2011 Jan;39(Database issue):D38-51. doi: 10.1093/nar/gkq1172. Epub 2010 Nov 21.
5
Improving the inter-corpora compatibility for protein annotations.
J Bioinform Comput Biol. 2010 Oct;8(5):901-16. doi: 10.1142/s0219720010004999.
10
Overview of BioCreative II gene normalization.生物创意II基因标准化概述。
Genome Biol. 2008;9 Suppl 2(Suppl 2):S3. doi: 10.1186/gb-2008-9-s2-s3. Epub 2008 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验