Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California at Berkeley, Berkeley, California 94720, USA.
Nature. 2012 Oct 4;490(7418):107-11. doi: 10.1038/nature11351. Epub 2012 Aug 19.
Detection of microbial products by host inflammasomes is an important mechanism of innate immune surveillance. Inflammasomes activate the caspase-1 (CASP1) protease, which processes the cytokines interleukin (IL)-1β and IL-18, and initiates a lytic host cell death called pyroptosis. To identify novel CASP1 functions in vivo, we devised a strategy for cytosolic delivery of bacterial flagellin, a specific ligand for the NAIP5 (NLR family, apoptosis inhibitory protein 5)/NLRC4 (NLR family, CARD-domain-containing 4) inflammasome. Here we show that systemic inflammasome activation by flagellin leads to a loss of vascular fluid into the intestine and peritoneal cavity, resulting in rapid (less than 30 min) death in mice. This unexpected response depends on the inflammasome components NAIP5, NLRC4 and CASP1, but is independent of the production of IL-1β or IL-18. Instead, inflammasome activation results, within minutes, in an 'eicosanoid storm'--a pathological release of signalling lipids, including prostaglandins and leukotrienes, that rapidly initiate inflammation and vascular fluid loss. Mice deficient in cyclooxygenase-1, a critical enzyme in prostaglandin biosynthesis, are resistant to these rapid pathological effects of systemic inflammasome activation by either flagellin or anthrax lethal toxin. Inflammasome-dependent biosynthesis of eicosanoids is mediated by the activation of cytosolic phospholipase A(2) in resident peritoneal macrophages, which are specifically primed for the production of eicosanoids by high expression of eicosanoid biosynthetic enzymes. Our results therefore identify eicosanoids as a previously unrecognized cell-type-specific signalling output of the inflammasome with marked physiological consequences in vivo.
宿主模式识别受体检测微生物产物是先天免疫监视的重要机制。炎性小体激活半胱氨酸蛋白酶 1(CASP1),其可加工白细胞介素(IL)-1β和 IL-18 细胞因子,并引发细胞裂解性细胞死亡,即细胞焦亡。为了鉴定体内 CASP1 的新功能,我们设计了一种细菌鞭毛蛋白(NAIP5/NLRC4 炎性小体的特定配体)胞质传递的策略。在这里,我们发现炎性小体激活导致血管内液体进入肠道和腹腔,导致小鼠迅速(少于 30 分钟)死亡。这种意外反应取决于炎性小体成分 NAIP5、NLRC4 和 CASP1,但不依赖于 IL-1β 或 IL-18 的产生。相反,炎性小体激活在数分钟内引发“类花生酸风暴”——信号脂质(包括前列腺素和白三烯)的病理性释放,迅速引发炎症和血管内液体丢失。环氧化酶-1(前列腺素生物合成的关键酶)缺陷型小鼠对鞭毛蛋白或炭疽致死毒素引起的全身炎性小体激活的这些快速病理效应具有抗性。炎性小体依赖性类二十烷酸的生物合成是通过驻留腹腔巨噬细胞胞质型磷脂酶 A2 的激活介导的,这些巨噬细胞通过高表达类二十烷酸生物合成酶而被特异性地为类二十烷酸的产生而致敏。因此,我们的结果确定了类二十烷酸作为炎性体以前未被识别的具有显著体内生理后果的细胞类型特异性信号输出物。