Suppr超能文献

应用个体增长曲线模型评估康复变化的介绍:国家残疾研究所和康复研究创伤性脑损伤模型系统报告。

An introduction to applying individual growth curve models to evaluate change in rehabilitation: a National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems report.

机构信息

Center for Rehabilitation Outcomes Research, Rehabilitation Institute of Chicago, IL 60611, USA.

出版信息

Arch Phys Med Rehabil. 2013 Mar;94(3):589-96. doi: 10.1016/j.apmr.2012.08.199. Epub 2012 Aug 17.

Abstract

The abundance of time-dependent information contained in the Spinal Cord Injury and the Traumatic Brain Injury Model Systems National Databases, and the increased prevalence of repeated-measures designs in clinical trials highlight the need for more powerful longitudinal analytic methodologies in rehabilitation research. This article describes the particularly versatile analytic technique of individual growth curve (IGC) analysis. A defining characteristic of IGC analysis is that change in outcome such as functional recovery can be described at both the patient and group levels, such that it is possible to contrast 1 patient with other patients, subgroups of patients, or a group as a whole. Other appealing characteristics of IGC analysis include its flexibility in describing how outcomes progress over time (whether in linear, curvilinear, cyclical, or other fashion), its ability to accommodate covariates at multiple levels of analyses to better describe change, and its ability to accommodate cases with partially missing outcome data. These features make IGC analysis an ideal tool for investigating longitudinal outcome data and to better equip researchers and clinicians to explore a multitude of hypotheses. The goal of this special communication is to familiarize the rehabilitation community with IGC analysis and encourage the use of this sophisticated research tool to better understand temporal change in outcomes.

摘要

脊髓损伤和创伤性脑损伤模型系统国家数据库中包含大量随时间变化的信息,临床试验中重复测量设计的增加也凸显了康复研究中需要更强大的纵向分析方法。本文介绍了一种特别灵活的分析技术——个体增长曲线(IGC)分析。IGC 分析的一个定义特征是,可以在患者和群体两个层面上描述功能恢复等结果的变化,从而可以将一个患者与其他患者、患者亚组或整个群体进行对比。IGC 分析的其他吸引人的特点包括它能够灵活地描述结果随时间的变化方式(无论是线性、曲线、周期性还是其他方式),能够在多个分析层次上适应协变量以更好地描述变化,以及能够适应部分缺失结果数据的情况。这些特点使 IGC 分析成为研究纵向结果数据的理想工具,使研究人员和临床医生能够更好地探索多种假设。本专题通讯的目的是使康复界熟悉 IGC 分析,并鼓励使用这种复杂的研究工具来更好地理解结果的时间变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验