Suppr超能文献

一种用于计算具有“浅层注释”的基因之间基于 GO 的功能相似性的敏感方法。

A sensitive method for computing GO-based functional similarities among genes with 'shallow annotation'.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.

出版信息

Gene. 2012 Nov 1;509(1):131-5. doi: 10.1016/j.gene.2012.07.078. Epub 2012 Aug 10.

Abstract

Methods for computing similarities among genes have attracted increasing attention for their applications in gene clustering, gene expression data analysis, protein interaction prediction and evaluation. To address the need for automatically computing functional similarities of genes, an important class of methods that computes functional similarities by comparing Gene Ontology (GO) annotations of genes has been developed. However, all of the currently available methods have some drawbacks; for example, they either ignore the specificity of the GO terms or do not consider the information contained within the GO structure. As a result, the existing methods perform weakly when the genes are annotated with 'shallow annotations'. Here, we propose a new method to compute functional similarities among genes based on their GO annotations and compare it with the widely-used G-SESAME method. The results show that the new method reliably distinguishes functional similarities among genes and demonstrate that the method is especially sensitive to genes with 'shallow annotations'. Moreover, our method has high correlations with sequence and EC similarities.

摘要

计算基因相似性的方法因其在基因聚类、基因表达数据分析、蛋白质相互作用预测和评估中的应用而受到越来越多的关注。为了满足自动计算基因功能相似性的需求,已经开发了一类重要的方法,通过比较基因的基因本体 (GO) 注释来计算功能相似性。然而,目前所有可用的方法都存在一些缺点;例如,它们要么忽略 GO 术语的特异性,要么不考虑 GO 结构中包含的信息。因此,当基因被“浅层注释”注释时,现有方法的性能较弱。在这里,我们提出了一种基于基因 GO 注释计算基因间功能相似性的新方法,并与广泛使用的 G-SESAME 方法进行了比较。结果表明,新方法能够可靠地区分基因间的功能相似性,并且表明该方法对具有“浅层注释”的基因特别敏感。此外,我们的方法与序列和 EC 相似性具有高度相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验