Suppr超能文献

原发性前列腺癌的分子亚型揭示了不同 ETS 重排的特定和共有靶基因。

Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements.

机构信息

Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.

出版信息

Neoplasia. 2012 Jul;14(7):600-11. doi: 10.1593/neo.12600.

Abstract

This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

摘要

这项工作旨在评估 ETS 转录因子(常涉及前列腺癌(PCa)中的重排),即 ERG 和 ETV1,是否调节特定或共享的靶基因。我们使用外显子水平的表达微阵列对 9 个正常前列腺组织和 50 个富含不同 ETS 重排的 PCa 进行差异表达分析,然后使用细胞系模型进行体外验证。我们发现 ERG 阳性 PCa 中 57 个基因的表达失调,ETV1 阳性 PCa 中 15 个基因的表达失调,而两种肿瘤亚型中共有 27 个基因的表达失调。我们进一步表明,七个肿瘤相关的 ERG 靶基因(PLA1A、CACNA1D、ATP8A2、HLA-DMB、PDE3B、TDRD1 和 TMBIM1)和两个肿瘤相关的 ETV1 靶基因(FKBP10 和 GLYATL2)的表达在 VCaP 和 LNCaP 细胞系模型中分别受到特定 ETS 沉默的显著影响,而三个候选的 ERG 和 ETV1 共享靶基因(GRPR、KCNH8 和 TMEM45B)的表达在 ETS 沉默时受到显著影响。有趣的是,我们证明了我们列表中 ERG 特异性候选靶基因中表达最高的基因 TDRD1 的表达与在 PCa 中转录起始位点-66 bp 处发现的 CpG 岛的甲基化水平呈负相关,并且 TDRD1 的表达受 ERG 直接结合到 VCaP 细胞中 CpG 岛的调节。我们得出结论,ETS 转录因子调节特定和共享的靶基因,并且 TDRD1、FKBP10 和 GRPR 是有前途的治疗靶点,并可作为具有特定融合基因重排的 PCa 分子亚型的诊断标志物。

相似文献

6
YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion.
PLoS One. 2011 Apr 29;6(4):e19343. doi: 10.1371/journal.pone.0019343.
7
FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer.
Genes Chromosomes Cancer. 2012 Mar;51(3):240-9. doi: 10.1002/gcc.20948. Epub 2011 Nov 12.
8
Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India.
Prostate. 2015 Jul 1;75(10):1051-62. doi: 10.1002/pros.22989. Epub 2015 Mar 23.
9
Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.
Cancer Discov. 2015 May;5(5):550-63. doi: 10.1158/2159-8290.CD-13-1050. Epub 2015 Feb 4.
10
Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.
Int J Cancer. 2013 Jul 15;133(2):335-45. doi: 10.1002/ijc.28025. Epub 2013 Feb 12.

引用本文的文献

1
New insights into markers for distinguishing neuroendocrine prostate cancer: evidence from single-cell analysis.
Front Immunol. 2025 Mar 14;16:1551815. doi: 10.3389/fimmu.2025.1551815. eCollection 2025.
2
Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications.
Front Oncol. 2024 May 10;14:1355551. doi: 10.3389/fonc.2024.1355551. eCollection 2024.
4
The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery.
Oncogene. 2023 Jun;42(22):1821-1831. doi: 10.1038/s41388-023-02690-x. Epub 2023 Apr 12.
9
Transcriptomes of Prostate Cancer with TMPRSS2:ERG and Other ETS Fusions.
Mol Cancer Res. 2023 Jan 3;21(1):14-23. doi: 10.1158/1541-7786.MCR-22-0446.
10
Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data.
BMC Bioinformatics. 2020 Mar 11;21(Suppl 2):78. doi: 10.1186/s12859-020-3345-9.

本文引用的文献

1
FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer.
Genes Chromosomes Cancer. 2012 Mar;51(3):240-9. doi: 10.1002/gcc.20948. Epub 2011 Nov 12.
3
Global identification of androgen response elements.
Methods Mol Biol. 2011;776:255-73. doi: 10.1007/978-1-61779-243-4_15.
5
ERG oncogene modulates prostaglandin signaling in prostate cancer cells.
Cancer Biol Ther. 2011 Feb 15;11(4):410-7. doi: 10.4161/cbt.11.4.14180.
6
CDX2 autoregulation in human intestinal metaplasia of the stomach: impact on the stability of the phenotype.
Gut. 2011 Mar;60(3):290-8. doi: 10.1136/gut.2010.222323. Epub 2010 Dec 9.
7
Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples.
Clin Cancer Res. 2010 Dec 1;16(23):5842-51. doi: 10.1158/1078-0432.CCR-10-1312. Epub 2010 Oct 25.
8
FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells.
Cancer Res. 2010 Sep 1;70(17):6735-45. doi: 10.1158/0008-5472.CAN-10-0244. Epub 2010 Aug 16.
9
Integrative genomic profiling of human prostate cancer.
Cancer Cell. 2010 Jul 13;18(1):11-22. doi: 10.1016/j.ccr.2010.05.026. Epub 2010 Jun 24.
10
Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo.
EMBO J. 2010 Jul 7;29(13):2147-60. doi: 10.1038/emboj.2010.106. Epub 2010 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验