Suppr超能文献

1577例原发性前列腺癌的特征分析揭示了分子亚型的新生物学和临床病理见解。

Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes.

作者信息

Tomlins Scott A, Alshalalfa Mohammed, Davicioni Elai, Erho Nicholas, Yousefi Kasra, Zhao Shuang, Haddad Zaid, Den Robert B, Dicker Adam P, Trock Bruce J, DeMarzo Angelo M, Ross Ashley E, Schaeffer Edward M, Klein Eric A, Magi-Galluzzi Cristina, Karnes R Jeffrey, Jenkins Robert B, Feng Felix Y

机构信息

Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.

GenomeDx Bioscience Inc., Vancouver, British Columbia, Canada.

出版信息

Eur Urol. 2015 Oct;68(4):555-67. doi: 10.1016/j.eururo.2015.04.033. Epub 2015 May 8.

Abstract

BACKGROUND

Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests.

OBJECTIVE

To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping.

DESIGN, SETTING, AND PARTICIPANTS: We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)).

OUTCOME MEASUREMENTS

Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves.

RESULTS AND LIMITATIONS

The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p<0.001). m-ETS(+) tumors were associated with seminal vesicle invasion (p=0.01), while m-SPINK1(+)/triple negative tumors had higher Gleason scores and were more frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly different among subtypes.

CONCLUSIONS

A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathologic differences were found among subtypes based on global expression patterns.

PATIENT SUMMARY

Molecular subtyping of prostate cancer can be achieved using extra data generated from a clinical-grade, genome-wide expression-profiling prognostic assay (Decipher). Transcriptomic and clinical analysis support three distinct molecular subtypes: (1) m-ERG(+), (2) m-ETS(+), and (3) m-SPINK1(+)/triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Incorporation of subtyping into a clinically available assay may facilitate additional applications beyond routine prognosis.

摘要

背景

前列腺癌(PCa)分子亚型基本上由相互排斥的事件定义,包括ETS基因融合(最常见的是涉及ERG)和SPINK1过表达。临床评估可能有助于疾病分层,补充现有的预后检测方法。

目的

确定基于微阵列的分子亚型分析的分析有效性和临床病理相关性。

设计、研究地点和参与者:我们分析了来自8个根治性前列腺切除术队列的1577例患者的Affymetrix基因芯片表达谱,其中1351例使用在美国加利福尼亚州圣地亚哥的GenomeDx Biosciences公司进行的Decipher预后检测(该实验室具有临床实验室改进修正案认证)进行评估。基于微阵列(m-)的随机森林ERG分类模型经过训练和验证。使用异常值表达分析来预测其他相互排斥的非ERG ETS基因重排(ETS(+))或SPINK1过表达(SPINK1(+))。

结果测量

通过多变量逻辑回归分析和受试者工作曲线分析与临床特征和结果的相关性。

结果与局限性

m-ERG分类器在独立验证子集(155个样本)中显示出95%的准确率。在各个队列中,45%的前列腺癌被分类为m-ERG(+),9%为m-ETS(+),8%为m-SPINK1(+),38%为三阴性(m-ERG(-)/m-ETS(-)/m-SPINK1(-))。基因表达谱支持三个潜在的分子定义组:m-ERG(+)、m-ETS(+)和m-SPINK1(+)/三阴性。多变量分析显示,m-ERG(+)肿瘤与术前血清前列腺特异性抗原水平较低和Gleason评分较低相关,但前列腺外侵犯更严重(p<0.001)。m-ETS(+)肿瘤与精囊侵犯相关(p=0.01),而m-SPINK1(+)/三阴性肿瘤的Gleason评分较高,在黑人/非裔美国患者中更常见(p<0.001)。各亚型之间的临床结果无显著差异。

结论

一种临床可用的预后检测方法(Decipher)也可以评估前列腺癌分子亚型,无需额外检测。基于整体表达模式发现各亚型之间存在临床病理差异。

患者总结

前列腺癌分子亚型分型可通过临床级全基因组表达谱预后检测(Decipher)产生的额外数据实现。转录组学和临床分析支持三种不同的分子亚型:(1)m-ERG(+),(2)m-ETS(+),和(3)m-SPINK1(+)/三阴性(m-ERG(-)/m-ETS(-)/m-SPINK1(-))。将亚型分型纳入临床可用检测方法可能有助于在常规预后之外的更多应用。

相似文献

2
The role of SPINK1 in ETS rearrangement-negative prostate cancers.
Cancer Cell. 2008 Jun;13(6):519-28. doi: 10.1016/j.ccr.2008.04.016.
6
Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India.
Prostate. 2015 Jul 1;75(10):1051-62. doi: 10.1002/pros.22989. Epub 2015 Mar 23.
7
Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location.
Eur Urol. 2016 Jul;70(1):14-17. doi: 10.1016/j.eururo.2015.09.031. Epub 2015 Oct 9.
8
Clinical value of ERG, TFF3, and SPINK1 for molecular subtyping of prostate cancer.
Cancer. 2015 May 1;121(9):1422-30. doi: 10.1002/cncr.29233. Epub 2015 Jan 13.

引用本文的文献

1
Genomic Signatures Correlating With Adverse Pathologic Features in Men Eligible for Active Surveillance.
Prostate. 2025 Sep;85(12):1114-1120. doi: 10.1002/pros.24924. Epub 2025 Jun 20.
3
The Germline and Somatic Origins of Prostate Cancer Heterogeneity.
Cancer Discov. 2025 May 2;15(5):988-1017. doi: 10.1158/2159-8290.CD-23-0882.
6
Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy.
Ann Med. 2023;55(2):2279235. doi: 10.1080/07853890.2023.2279235. Epub 2023 Nov 8.
7
A harmonized resource of integrated prostate cancer clinical, -omic, and signature features.
Sci Data. 2023 Jul 5;10(1):430. doi: 10.1038/s41597-023-02335-4.
8
Biomarkers of Aggressive Prostate Cancer at Diagnosis.
Int J Mol Sci. 2023 Jan 22;24(3):2185. doi: 10.3390/ijms24032185.

本文引用的文献

2
ERG induces taxane resistance in castration-resistant prostate cancer.
Nat Commun. 2014 Nov 25;5:5548. doi: 10.1038/ncomms6548.
3
Novel RNA hybridization method for the in situ detection of ETV1, ETV4, and ETV5 gene fusions in prostate cancer.
Appl Immunohistochem Mol Morphol. 2014 Sep;22(8):e32-40. doi: 10.1097/PAI.0000000000000095.
5
Evidence for molecular differences in prostate cancer between African American and Caucasian men.
Clin Cancer Res. 2014 Sep 15;20(18):4925-34. doi: 10.1158/1078-0432.CCR-13-2265. Epub 2014 Jul 23.
6
Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy.
Int J Radiat Oncol Biol Phys. 2014 Aug 1;89(5):1038-1046. doi: 10.1016/j.ijrobp.2014.04.052. Epub 2014 Jul 8.
7
Prostate cancer SubtyPINg biomarKers and outcome: is clarity emERGing?
Clin Cancer Res. 2014 Sep 15;20(18):4733-6. doi: 10.1158/1078-0432.CCR-14-0818. Epub 2014 Jun 18.
9
SPINK1 protein expression and prostate cancer progression.
Clin Cancer Res. 2014 Sep 15;20(18):4904-11. doi: 10.1158/1078-0432.CCR-13-1341. Epub 2014 Mar 31.
10
Diagnostic challenges of clonal heterogeneity in prostate cancer.
J Clin Oncol. 2015 Mar 1;33(7):e38-40. doi: 10.1200/JCO.2013.50.3540. Epub 2014 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验