Suppr超能文献

血流动力学驱动斑马鱼脑血管发育性修剪。

Haemodynamics-driven developmental pruning of brain vasculature in zebrafish.

机构信息

Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

PLoS Biol. 2012;10(8):e1001374. doi: 10.1371/journal.pbio.1001374. Epub 2012 Aug 14.

Abstract

The brain blood vasculature consists of a highly ramified vessel network that is tailored to meet its physiological functions. How the brain vasculature is formed has long been fascinating biologists. Here we report that the developing vasculature in the zebrafish midbrain undergoes not only angiogenesis but also extensive vessel pruning, which is driven by changes in blood flow. This pruning process shapes the initial exuberant interconnected meshwork into a simplified architecture. Using in vivo long-term serial confocal imaging of the same zebrafish larvae during 1.5-7.5 d post-fertilization, we found that the early formed midbrain vasculature consisted of many vessel loops and higher order segments. Vessel pruning occurred preferentially at loop-forming segments via a process mainly involving lateral migration of endothelial cells (ECs) from pruned to unpruned segments rather than EC apoptosis, leading to gradual reduction in the vasculature complexity with development. Compared to unpruned ones, pruned segments exhibited a low and variable blood flow, which further decreased irreversibly prior to the onset of pruning. Local blockade of blood flow with micro-bead obstruction led to vessel pruning, whereas increasing blood flow by noradrenergic elevation of heartbeat impeded the pruning process. Furthermore, the occurrence of vessel pruning could be largely predicted by haemodynamics-based numerical simulation of vasculature refinement. Thus, changes of blood flow drive vessel pruning via lateral migration of ECs, leading to the simplification of the vasculature and possibly efficient routing of blood flow in the developing brain.

摘要

脑血脉管系统由高度分支的血管网络组成,该网络专门为满足其生理功能而定制。脑脉管系统是如何形成的一直令生物学家着迷。在这里,我们报告说,斑马鱼中脑的发育中的脉管系统不仅经历血管生成,而且还经历广泛的血管修剪,这是由血流变化驱动的。这个修剪过程将最初丰富的相互连接的网状结构塑造为简化的结构。通过对受精后 1.5-7.5 天的相同斑马鱼幼虫进行体内长期连续共聚焦成像,我们发现早期形成的中脑脉管系统由许多血管环和高阶节段组成。血管修剪主要通过内皮细胞(EC)从修剪到未修剪节段的侧向迁移而不是 EC 凋亡,优先发生在形成环的节段,导致随着发育血管复杂性逐渐降低。与未修剪的节段相比,修剪的节段表现出低且可变的血流,这在修剪发生之前不可逆地进一步降低。用微珠阻塞局部阻断血流会导致血管修剪,而通过增加心跳的去甲肾上腺素来增加血流会阻碍修剪过程。此外,血管修剪的发生可以通过基于血流动力学的脉管细化数值模拟来进行预测。因此,血流变化通过 EC 的侧向迁移来驱动血管修剪,导致脉管系统的简化,并可能在发育中的大脑中有效地引导血流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f4c/3419171/019b3fe1c79c/pbio.1001374.g001.jpg

相似文献

1
Haemodynamics-driven developmental pruning of brain vasculature in zebrafish.
PLoS Biol. 2012;10(8):e1001374. doi: 10.1371/journal.pbio.1001374. Epub 2012 Aug 14.
2
Apoptosis of Endothelial Cells Contributes to Brain Vessel Pruning of Zebrafish During Development.
Front Mol Neurosci. 2018 Jun 28;11:222. doi: 10.3389/fnmol.2018.00222. eCollection 2018.
3
Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.
PLoS One. 2013 Oct 11;8(10):e75060. doi: 10.1371/journal.pone.0075060. eCollection 2013.
4
Pruning brain vasculature for efficiency.
PLoS Biol. 2012;10(8):e1001375. doi: 10.1371/journal.pbio.1001375. Epub 2012 Aug 14.
5
8
reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins.
Dev Biol. 2003 Dec 1;264(1):263-74. doi: 10.1016/j.ydbio.2003.08.016.
9
Endothelial cell self-fusion during vascular pruning.
PLoS Biol. 2015 Apr 17;13(4):e1002126. doi: 10.1371/journal.pbio.1002126. eCollection 2015 Apr.

引用本文的文献

1
Temporal dynamics of angiogenesis: the emerging role of mechanoregulated pathways.
Biochem Soc Trans. 2025 Aug 29;53(4):909-923. doi: 10.1042/BST20253048.
2
Direct blood flow velocity measurements of zebrafish cerebral vessels with a dual-mode light-sheet microscope.
Biomed Opt Express. 2025 Jun 2;16(7):2573-2583. doi: 10.1364/BOE.553584. eCollection 2025 Jul 1.
4
Reduction of neuronal activity mediated by blood-vessel regression in the adult brain.
Nat Commun. 2025 Jul 1;16(1):5840. doi: 10.1038/s41467-025-60308-0.
5
Reversal of cerebrovascular anomalies in a zebrafish model of vein of Galen aneurysm.
Nat Cardiovasc Res. 2025 Jun;4(6):773-789. doi: 10.1038/s44161-025-00659-5. Epub 2025 Jun 12.
6
Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations.
APL Bioeng. 2025 Feb 5;9(1):016106. doi: 10.1063/5.0234507. eCollection 2025 Mar.
9
Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations.
bioRxiv. 2024 Dec 9:2024.08.22.609165. doi: 10.1101/2024.08.22.609165.
10
Hemodynamic regulation allows stable growth of microvascular networks.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2310993121. doi: 10.1073/pnas.2310993121. Epub 2024 Feb 22.

本文引用的文献

1
Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors.
Nat Protoc. 2011 Nov 3;6(12):1835-46. doi: 10.1038/nprot.2011.395.
2
Molecular control of endothelial cell behaviour during blood vessel morphogenesis.
Nat Rev Mol Cell Biol. 2011 Aug 23;12(9):551-64. doi: 10.1038/nrm3176.
3
The Dll4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow.
Blood. 2011 Jun 16;117(24):6728-37. doi: 10.1182/blood-2010-08-302067. Epub 2011 Apr 15.
4
Assembly and patterning of the vascular network of the vertebrate hindbrain.
Development. 2011 May;138(9):1705-15. doi: 10.1242/dev.058776. Epub 2011 Mar 23.
5
Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling.
Development. 2011 May;138(9):1717-26. doi: 10.1242/dev.059881. Epub 2011 Mar 23.
6
GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5759-64. doi: 10.1073/pnas.1017192108. Epub 2011 Mar 18.
7
Interaction between alk1 and blood flow in the development of arteriovenous malformations.
Development. 2011 Apr;138(8):1573-82. doi: 10.1242/dev.060467. Epub 2011 Mar 9.
8
Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2807-12. doi: 10.1073/pnas.1019761108. Epub 2011 Jan 31.
9
Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives.
Physiol Rev. 2011 Jan;91(1):327-87. doi: 10.1152/physrev.00047.2009.
10
Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124.
Science. 2010 Nov 12;330(6006):985-9. doi: 10.1126/science.1196554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验