Suppr超能文献

固体传导型内原纳米电极的神经元记录。

Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs).

机构信息

Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany.

出版信息

PLoS One. 2012;7(8):e43194. doi: 10.1371/journal.pone.0043194. Epub 2012 Aug 15.

Abstract

Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have tips that are <300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue. Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for nanotechnology in the development of new electrical recording techniques in neuroscience.

摘要

直接记录神经元跨膜电位对于理解支持神经元计算的生物物理机制至关重要。然而,现有的细胞内记录技术通过改变细胞内生化环境和/或破坏质膜,限制了这些测量的准确性和持续时间。在这里,我们证明了纳米工程电极可以用于记录脑组织中的神经元跨膜电位,而不会引起这些生理干扰。我们使用聚焦离子束铣削技术,从常规的钨微电极制造出了固体导体细胞内纳米电极(SCINEs)。SCINEs 的尖端直径小于 300nm,但可以很容易地进行处理,并且可以插入脑组织中。通过同时进行全细胞膜片钳记录,我们发现 SCINEs 可以记录动作电位 (AP) 以及较慢的、阈下神经元电位,而不会改变细胞特性。这些结果表明纳米技术在开发神经科学中新型电记录技术方面发挥着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9400/3419643/e48c5ac791f5/pone.0043194.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验