Suppr超能文献

用于记录活动运动器官动作电位的可拆卸玻璃微电极。

Detachable glass microelectrodes for recording action potentials in active moving organs.

作者信息

Barbic Mladen, Moreno Angel, Harris Tim D, Kay Matthew W

机构信息

Applied Physics and Instrumentation Group, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia; and.

Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia.

出版信息

Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1248-H1259. doi: 10.1152/ajpheart.00741.2016. Epub 2017 May 5.

Abstract

Here, we describe new detachable floating glass micropipette electrode devices that provide targeted action potential recordings in active moving organs without requiring constant mechanical constraint or pharmacological inhibition of tissue motion. The technology is based on the concept of a glass micropipette electrode that is held firmly during cell targeting and intracellular insertion, after which a 100-µg glass microelectrode, a "microdevice," is gently released to remain within the moving organ. The microdevices provide long-term recordings of action potentials, even during millimeter-scale movement of tissue in which the device is embedded. We demonstrate two different glass micropipette electrode holding and detachment designs appropriate for the heart (sharp glass microdevices for cardiac myocytes in rats, guinea pigs, and humans) and the brain (patch glass microdevices for neurons in rats). We explain how microdevices enable measurements of multiple cells within a moving organ that are typically difficult with other technologies. Using sharp microdevices, action potential duration was monitored continuously for 15 min in unconstrained perfused hearts during global ischemia-reperfusion, providing beat-to-beat measurements of changes in action potential duration. Action potentials from neurons in the hippocampus of anesthetized rats were measured with patch microdevices, which provided stable base potentials during long-term recordings. Our results demonstrate that detachable microdevices are an elegant and robust tool to record electrical activity with high temporal resolution and cellular level localization without disturbing the physiological working conditions of the organ. Cellular action potential measurements within tissue using glass micropipette electrodes usually require tissue immobilization, potentially influencing the physiological relevance of the measurement. Here, we addressed this limitation with novel 100-µg detachable glass microelectrodes that can be precisely positioned to provide long-term measurements of action potential duration during unconstrained tissue movement.

摘要

在此,我们描述了一种新型的可拆卸漂浮玻璃微电极装置,该装置可在活动的器官中进行靶向动作电位记录,而无需对组织运动进行持续的机械约束或药物抑制。该技术基于玻璃微电极的概念,即在细胞靶向和细胞内插入过程中,玻璃微电极被牢固固定,之后,一个100微克的玻璃微电极(一种“微型装置”)被轻轻释放,使其留在活动的器官内。这些微型装置即使在嵌入其的组织进行毫米级运动时,也能提供动作电位的长期记录。我们展示了两种适用于心脏(用于大鼠、豚鼠和人类心肌细胞的尖锐玻璃微型装置)和大脑(用于大鼠神经元的膜片玻璃微型装置)的不同玻璃微电极固定和分离设计。我们解释了微型装置如何能够测量活动器官内的多个细胞,而这通常是其他技术难以做到的。使用尖锐微型装置,在整体缺血 - 再灌注期间,对无约束灌注心脏中的动作电位持续时间进行了连续15分钟的监测,提供了逐搏的动作电位持续时间变化测量。使用膜片微型装置测量了麻醉大鼠海马体中神经元的动作电位,在长期记录过程中提供了稳定的基线电位。我们的结果表明,可拆卸微型装置是一种优雅且强大的工具,能够在不干扰器官生理工作条件的情况下,以高时间分辨率和细胞水平定位记录电活动。使用玻璃微电极在组织内进行细胞动作电位测量通常需要组织固定,这可能会影响测量的生理相关性。在此,我们通过新型的100微克可拆卸玻璃微电极解决了这一限制,这些微电极可以精确放置,以在无约束组织运动期间提供动作电位持续时间的长期测量。

相似文献

1
Detachable glass microelectrodes for recording action potentials in active moving organs.
Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1248-H1259. doi: 10.1152/ajpheart.00741.2016. Epub 2017 May 5.
2
Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
J Neural Eng. 2014 Oct;11(5):056028. doi: 10.1088/1741-2560/11/5/056028. Epub 2014 Sep 23.
3
NanoTouch: intracellular recording using transmembrane conductive nanoparticles.
J Neurophysiol. 2019 Nov 1;122(5):2016-2026. doi: 10.1152/jn.00359.2019. Epub 2019 Sep 4.
4
Microelectrode arrays: a new tool to measure embryonic heart activity.
J Electrocardiol. 2004;37 Suppl:104-9. doi: 10.1016/j.jelectrocard.2004.08.033.
5
Single-chip microelectronic system to interface with living cells.
Biosens Bioelectron. 2007 May 15;22(11):2546-53. doi: 10.1016/j.bios.2006.10.003. Epub 2006 Nov 13.
6
Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor.
Nat Nanotechnol. 2011 Dec 18;7(3):174-9. doi: 10.1038/nnano.2011.223.
7
Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
Biosens Bioelectron. 2002 Jun;17(6-7):597-604. doi: 10.1016/s0956-5663(02)00015-5.
8
Multimodal in vivo brain electrophysiology with integrated glass microelectrodes.
Nat Biomed Eng. 2019 Sep;3(9):741-753. doi: 10.1038/s41551-019-0373-8. Epub 2019 Apr 1.
9
Whole-cell recordings in freely moving rats.
Neuron. 2006 Aug 17;51(4):399-407. doi: 10.1016/j.neuron.2006.07.004.
10
Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
J Neurosci Methods. 1997 Feb;71(2):199-204. doi: 10.1016/s0165-0270(96)00145-8.

引用本文的文献

1
A Novel Wax Based Piezo Actuator for Autonomous Deep Anterior Lamellar Keratoplasty (Piezo-DALK).
Rep U S. 2021 Sep-Oct;2021:757-764. doi: 10.1109/iros51168.2021.9636153. Epub 2021 Dec 16.
2
Robotic multi-probe single-actuator inchworm neural microdrive.
Elife. 2022 Nov 10;11:e71876. doi: 10.7554/eLife.71876.
3
Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1137-H1166. doi: 10.1152/ajpheart.00439.2022. Epub 2022 Oct 21.
4
Ephaptic Coupling Is a Mechanism of Conduction Reserve During Reduced Gap Junction Coupling.
Front Physiol. 2022 May 5;13:848019. doi: 10.3389/fphys.2022.848019. eCollection 2022.
5
Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research.
Am J Physiol Heart Circ Physiol. 2021 Dec 1;321(6):H1005-H1013. doi: 10.1152/ajpheart.00477.2021. Epub 2021 Oct 8.
6
Heart Slices to Model Cardiac Physiology.
Front Pharmacol. 2021 Feb 4;12:617922. doi: 10.3389/fphar.2021.617922. eCollection 2021.
7
Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity.
Toxicol Appl Pharmacol. 2020 Nov 1;406:115213. doi: 10.1016/j.taap.2020.115213. Epub 2020 Aug 30.
8
Mechanism of Action Potential Prolongation During Metabolic Inhibition in the Whole Rabbit Heart.
Front Physiol. 2018 Aug 9;9:1077. doi: 10.3389/fphys.2018.01077. eCollection 2018.
9
Statistical considerations in reporting cardiovascular research.
Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H303-H313. doi: 10.1152/ajpheart.00309.2018. Epub 2018 Jul 20.

本文引用的文献

1
A technical review of optical mapping of intracellular calcium within myocardial tissue.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1388-401. doi: 10.1152/ajpheart.00665.2015. Epub 2016 Mar 25.
2
Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.
Am J Physiol Heart Circ Physiol. 2015 Oct;309(8):H1281-7. doi: 10.1152/ajpheart.00445.2015. Epub 2015 Sep 14.
3
Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.
Cardiovasc Res. 2015 Feb 1;105(2):143-50. doi: 10.1093/cvr/cvu258. Epub 2014 Dec 16.
5
Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.
J Physiol. 2014 Jul 1;592(13):2799-811. doi: 10.1113/jphysiol.2014.273482. Epub 2014 May 16.
6
KATP channels and cardiovascular disease: suddenly a syndrome.
Circ Res. 2013 Mar 29;112(7):1059-72. doi: 10.1161/CIRCRESAHA.112.300514.
7
The mechanobiology of brain function.
Nat Rev Neurosci. 2012 Dec;13(12):867-78. doi: 10.1038/nrn3383.
8
Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior.
Science. 2012 Aug 17;337(6096):849-53. doi: 10.1126/science.1221489.
9
Effects of ventricular pacing protocol on electrical restitution assessments in guinea-pig heart.
Exp Physiol. 2012 Jul;97(7):807-21. doi: 10.1113/expphysiol.2012.065219. Epub 2012 Mar 23.
10
Transmural dispersion of repolarization in failing and nonfailing human ventricle.
Circ Res. 2010 Mar 19;106(5):981-91. doi: 10.1161/CIRCRESAHA.109.204891. Epub 2010 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验