Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Biochemistry. 2012 Sep 18;51(37):7367-82. doi: 10.1021/bi300956t. Epub 2012 Sep 6.
Differentiation of binding accurate DNA replication polymerases over error prone DNA lesion bypass polymerases is essential for the proper maintenance of the genome. The hyperthermophilic archaeal organism Sulfolobus solfataricus (Sso) contains both a B-family replication (Dpo1) and a Y-family repair (Dpo4) polymerase and serves as a model system for understanding molecular mechanisms and assemblies for DNA replication and repair protein complexes. Protein cross-linking, isothermal titration calorimetry, and analytical ultracentrifugation have confirmed a previously unrecognized dimeric Dpo4 complex bound to DNA. Binding discrimination between these polymerases on model DNA templates is complicated by the fact that multiple oligomeric species are influenced by concentration and temperature. Temperature-dependent fluorescence anisotropy equilibrium binding experiments were used to separate discrete binding events for the formation of trimeric Dpo1 and dimeric Dpo4 complexes on DNA. The associated equilibria are found to be temperature-dependent, generally leading to improved binding at higher temperatures for both polymerases. At high temperatures, DNA binding of Dpo1 monomer is favored over binding of Dpo4 monomer, but binding of Dpo1 trimer is even more strongly favored over binding of Dpo4 dimer, thus providing thermodynamic selection. Greater processivities of nucleotide incorporation for trimeric Dpo1 and dimeric Dpo4 are also observed at higher temperatures, providing biochemical validation for the influence of tightly bound oligomeric polymerases. These results separate, quantify, and confirm individual and sequential processes leading to the formation of oligomeric Dpo1 and Dpo4 assemblies on DNA and provide for a concentration- and temperature-dependent discrimination of binding undamaged DNA templates at physiological temperatures.
区分结合准确的 DNA 复制聚合酶与易错的 DNA 损伤旁路聚合酶对于基因组的正确维持至关重要。嗜热古菌 Sulfolobus solfataricus (Sso) 同时含有 B 族复制 (Dpo1) 和 Y 族修复 (Dpo4) 聚合酶,是理解 DNA 复制和修复蛋白复合物的分子机制和组装的模型系统。蛋白质交联、等温滴定量热法和分析超速离心法证实了以前未被识别的与 DNA 结合的二聚体 Dpo4 复合物。由于多种寡聚体物种受浓度和温度的影响,这些聚合酶在模型 DNA 模板上的结合区分变得复杂。温度依赖性荧光各向异性平衡结合实验用于分离三聚体 Dpo1 和二聚体 Dpo4 复合物在 DNA 上形成的离散结合事件。相关平衡是温度依赖性的,通常导致两种聚合酶在较高温度下的结合得到改善。在较高温度下,Dpo1 单体的 DNA 结合优先于 Dpo4 单体的结合,但 Dpo1 三聚体的结合甚至更强烈地优先于 Dpo4 二聚体的结合,从而提供热力学选择。在较高温度下,三聚体 Dpo1 和二聚体 Dpo4 的核苷酸掺入的更高的进程也得到了观察,为紧密结合的寡聚聚合酶的影响提供了生化验证。这些结果分离、量化并证实了导致寡聚 Dpo1 和 Dpo4 组装在 DNA 上形成的单个和连续过程,并提供了在生理温度下对未受损 DNA 模板的结合进行浓度和温度依赖性区分的方法。