Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria.
Neuroimage. 2012 Nov 15;63(3):1203-11. doi: 10.1016/j.neuroimage.2012.08.019. Epub 2012 Aug 14.
In robot assisted gait training, a pattern of human locomotion is executed repetitively with the intention to restore the motor programs associated with walking. Several studies showed that active contribution to the movement is critical for the encoding of motor memory. We propose to use brain monitoring techniques during gait training to encourage active participation in the movement. We investigated the spectral patterns in the electroencephalogram (EEG) that are related to active and passive robot assisted gait. Fourteen healthy participants were considered. Infomax independent component analysis separated the EEG into independent components representing brain, muscle, and eye movement activity, as well as other artifacts. An equivalent current dipole was calculated for each independent component. Independent components were clustered across participants based on their anatomical position and frequency spectra. Four clusters were identified in the sensorimotor cortices that accounted for differences between active and passive walking or showed activity related to the gait cycle. We show that in central midline areas the mu (8-12 Hz) and beta (18-21 Hz) rhythms are suppressed during active compared to passive walking. These changes are statistically significant: mu (F(1, 13)=11.2 p ≤ 0.01) and beta (F(1, 13)=7.7, p ≤ 0.05). We also show that these differences depend on the gait cycle phases. We provide first evidence of modulations of the gamma rhythm in the band 25 to 40 Hz, localized in central midline areas related to the phases of the gait cycle. We observed a trend (F(1, 8)=11.03, p ≤ 0.06) for suppressed low gamma rhythm when comparing active and passive walking. Additionally we found significant suppressions of the mu (F(1, 11)=20.1 p ≤ 0.01), beta (F(1, 11)=11.3 p ≤ 0.05) and gamma (F(1, 11)=4.9 p ≤ 0.05) rhythms near C3 (in the right hand area of the primary motor cortex) during phases of active vs. passive robot assisted walking. To our knowledge this is the first study showing EEG analysis during robot assisted walking. We provide evidence for significant differences in cortical activation between active and passive robot assisted gait. Our findings may help to define appropriate features for single trial detection of active participation in gait training. This work is a further step toward the evaluation of brain monitoring techniques and brain-computer interface technologies for improving gait rehabilitation therapies in a top-down approach.
在机器人辅助步态训练中,重复执行人类运动模式,旨在恢复与行走相关的运动程序。多项研究表明,主动参与运动对于运动记忆的编码至关重要。我们建议在步态训练期间使用脑监测技术来鼓励积极参与运动。我们研究了与主动和被动机器人辅助步态相关的脑电图 (EEG) 中的频谱模式。考虑了 14 名健康参与者。信息最大化独立成分分析将 EEG 分离成代表大脑、肌肉和眼动活动以及其他伪影的独立成分。为每个独立成分计算了等效电流偶极子。根据参与者的解剖位置和频谱,对独立成分进行聚类。在感觉运动皮层中确定了四个集群,这些集群解释了主动和被动行走之间的差异,或者显示了与步态周期相关的活动。我们表明,在中央中线区域,与被动行走相比,主动行走时 mu(8-12 Hz)和 beta(18-21 Hz)节律受到抑制。这些变化具有统计学意义:mu(F(1,13)=11.2,p ≤ 0.01)和 beta(F(1,13)=7.7,p ≤ 0.05)。我们还表明,这些差异取决于步态周期阶段。我们提供了在与步态周期相位相关的中线中央区域中,伽马节律在 25 到 40 Hz 频段调制的第一证据。我们观察到主动和被动行走时低频伽马节律抑制的趋势(F(1,8)=11.03,p ≤ 0.06)。此外,我们发现当比较主动和被动机器人辅助行走时,mu(F(1,11)=20.1,p ≤ 0.01)、beta(F(1,11)=11.3,p ≤ 0.05)和 gamma(F(1,11)=4.9,p ≤ 0.05)节律在主动 vs. 被动机器人辅助行走期间在 C3 附近(在初级运动皮层的右手区域)显著抑制。据我们所知,这是第一项在机器人辅助行走期间进行脑电图分析的研究。我们提供了主动和被动机器人辅助步态之间皮质激活存在显著差异的证据。我们的发现可能有助于为步态训练中主动参与的单次试验检测定义适当的特征。这项工作是朝着评估脑监测技术和脑机接口技术以自上而下的方法改善步态康复治疗的方向迈出的又一步。